Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement

2013-04-08
2013-01-1750
With the current state of ever rising fuel prices and unavailability of affordable alternate technologies, significant research and development efforts have been invested in recent times towards improving fuel efficiency of vehicles powered with conventional internal combustion engines. To achieve this, a varied approach has been adopted by researchers to cover the entire energy chain including fuel quality, combustion quality, power generation efficiency, down-sizing, power consumption efficiency, etc. Apart from energy generation, distribution and consumption, another domain that has been subjected to significant scrutiny is energy recuperation or recovery. A moving vehicle and a running engine provide a number of opportunities for useful back-recovery and storage of energy. The most significant sources for recuperation are the kinetic energy of the moving vehicle or running engine and to a lesser extent the thermal energy from medium such as exhaust gas.
Journal Article

Vehicle Level Approach for Optimization of On-Board Diagnostic Strategies for Fault Management

2013-04-08
2013-01-0957
As the vehicle functions are getting distributed over multiple ECUs in order to realize various complex control functions, the need for sophisticated on-board diagnostic strategies are increasing in automotive domain, leading to a significant amount of hardware and software implementations for fault management inside various ECUs in the vehicle. This paper proposes optimized vehicle level approach for fault management strategies, wherein a centralized intelligent Gateway Module is proposed in the vehicle network architecture, which will be responsible for fault management of the complete vehicle in a chronological sequence. This Gateway Module will thereby have the possibility to group a cluster of faults raised by different ECUs and correlate them meaningfully to guide the operator towards root cause of the fault.
Technical Paper

“Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization”

2008-10-07
2008-01-2683
Design of a Cabin Tilting System of heavy trucks, a multi degree of freedom mechanism, is a challenge. Factors like adequate tilting angle, cabin styling, packaging, non interference of tilting system with ride comfort, forces in the system, specifications of the hydraulic system, are all very important for designing the system. Numerous considerations make the design process highly iterative hence longer design time. This paper primarily focuses on Kinematics and Dynamic analysis of the system in ADAMS and validation of system with real time testing results. Intention of this work is to make a parametric ADAMS model and link it to a Knowledge Based Engineering application to facilitate designer to quickly carry out design iterations for reducing development time. The Knowledge Based Engineering software is made using object oriented language called ‘Object Definition Language’ which has been developed using C and C++ software languages.
Technical Paper

Development of IT Enabled System for Data Management to Meet EU Vehicle Recyclability Directives

2010-04-12
2010-01-0276
EU directive 2005/64/EC on type approval of motor vehicles with respect to their Reusability, Recyclability and Recoverability ( RRR ) requires vehicle manufacturers to put in place the necessary arrangements and procedures for Parts, Materials and Weight (PMW ) data collection from full chain of supply. This is required to perform the calculations of recyclability rate and recoverability rate in line with ISO 22628. Commonly practiced data collection methodologies included spreadsheet and use of internationally available IT support system for collection of material data. Data complexity and prohibitive cost for using Internationally available IT Support systems like IMDS (International Material Data System) has led to the in-house development of IT enabled Solution customizing Siemens PLM software product (Team centre Enterprise) and SAP (SRM suite).
Technical Paper

A Novel and Low Cost Strategy for Distance Logging in EEPROM for OBD-I Compliance

2011-04-12
2011-01-0708
On Board Diagnostics norms enforced by regulatory authorities of many countries require logging of distance traveled by the vehicle with MIL (malfunction indicator lamp) illuminated. This log needs to be maintained in non-volatile ECU memory. Conventional techniques maintain the log in a volatile memory during vehicle run-time and transfer the same to non-volatile memory when ignition is turned off. This requires use of a “power-hold” relay to keep an ECU power alive while the logged data in volatile memory is being transferred to non-volatile memory when ignition is switched-off. A novel strategy described in this paper avoids interface with power-hold relay, thereby reducing the system complexity. The design philosophy described makes use of an EEPROM to maintain the distance log. An innovative algorithm is employed to ensure that endurance specifications are not violated during the vehicle life-time.
Technical Paper

Design Methods to Optimize the Performance of Controller Area Networks

2012-04-16
2012-01-0194
This literature is in the field of communication networks where different Electronic Control Units (ECUs) communicate with each other over Controller Area Network (CAN) protocol. Typically these types of CAN networks are widely used in automotive vehicles, plant automations, etc. This proposed method is applicable in all such applications where controller area network is used as backbone electrical architecture. This literature proposes a new method of CAN signal packing into CAN frames so that network bus-load is minimized so that more number of CAN signals can be packed and more number of ECUs can be accommodated within a CAN network. The proposed method also ensures that the age of each CAN signal is minimized and all CAN signals reach the intended receiving ECUs within their maximum allowed age. Typically network designers are forced to design and develop multiple sub-networks and network gateways to get rid of network bus-load.
Technical Paper

Low Cost Vehicle Validation Strategy for Early Detection and Correction of Real-Life Performance Deficiencies of Various Subsystems

2012-04-16
2012-01-0930
Increasing number of ECU's (Electronic Control Units) being used in modern vehicles have given rise to HIL (hardware in the loop) testing, and model based design approach to design/test ECU's even before the proto-type vehicle is ready. However, it is not uncommon to discover surprising system design lapses during actual vehicle operation reported after vehicle launch. Major cause behind such lapses are found to be the gap between actual field performance/robustness of various vehicle sub-systems interfaced with ECU's and those modeled as ideal cases during HIL testing in the lab. This creates a need to evolve effective vehicle-level validation strategies to expose such performance deficiencies of real life sub-systems provided by the vendors. This paper describes a new approach to validate ECU in real time.
Technical Paper

Challenges to Meet New Noise Regulations and New Noise Limits for M and N Category Vehicles

2013-01-09
2013-26-0107
New noise regulations, with reduced noise limits, have been proposed by UN-ECE. A new method which aims at representing urban driving of the vehicles more closely on roads is proposed and is considerably different from the existing one (IS 3028:1998). It is more complex; we also found that some of the low powered vehicles can not be tested as per this method. The paper proposes ways of improvement in the test method. The new noise reduction policy options will have a considerable impact on compliance of many categories of vehicles. Technological challenges, before the manufacturers, to meet all performance needs of the vehicle along with the cost of development will be critical to meet the new noise limits in the proposed time frame.
Technical Paper

Optimized Methodology for Evaluation of Complex Network Architectures

2013-04-08
2013-01-1187
This paper is in the field of communication networks where different Electronic Control Units (ECUs) communicate with each other using various communication protocols such as Controller Area Network (CAN), Local Interconnect Network (LIN), FlexRay, etc. Typically such types of communication networks are widely used in automobile domain. This paper proposes a holistic approach for evaluation and finalization of complex network architecture for a vehicle. As part of this proposed method, at first one reference-network architecture is constructed for the highest end variant of the vehicle considering all possible ECUs for this vehicle. Then other possible logical variations in network architecture are constructed, which can also technically represent the vehicle's network architecture. Then a set of criteria measures are considered to evaluate how good (or bad) each variation of network architecture is with respect to the reference-network architecture.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

Spot Weld Failure Prediction in Safety Simulations Using MAT-240 Material Model in LS-DYNA

2015-01-14
2015-26-0165
Spot welding is the primary joining method used in automobiles. Spot-weld plays a major role to maintain vehicle structural integrity during impact tests. Robust spot weld failure definitions is critical for accurate predictions of structural performance in safety simulations. Spot welds have a complex metallurgical structure, mainly consisting of fusion and heat affected zones. For accurate material property definitions in simulation models, huge number of inputs from test data is required. Multiple tests, using different spot weld joinery configurations, have to be conducted. In order to accurately represent the spot-weld behavior in CAE, detailed modeling is required using fine mesh. The current challenge in spot-weld failure assessment is developing a methodology having a better trade-off between prediction accuracy, testing efforts and computation time. In view of the above, cohesive zone models have been found to be very effective and accurate.
Technical Paper

Utilizing Computed Tomography for Cell Characterization, Quality Assessment, and Failure Analysis

2024-01-16
2024-26-0189
Computed Tomography (CT) has become a potent instrument for non-invasive assessment of battery cell integrity, providing detailed insights into their internal structure. The present study explores the capabilities and advantages of employing CT for cell characterization through a systematic evaluation from various parameters. The evaluation results will be based on real-world experiments conducted on a standard battery cell, assessing the CT system’s ability to provide precise internal measurements, detect defects, and ensure the overall integrity of the cell. We outline a comprehensive framework that includes criteria such as system specifications, image quality, software capabilities, maintenance, service, and cost-effectiveness.
Technical Paper

Method of Generating Real-Time Digital Customer Feedback Loop for Connected Vehicle Applications

2024-01-16
2024-26-0258
This paper focuses on developing an application to extract insights from Android app reviews of Connected Car Applications and Twitter conversations related to OEM’ PV & EV Vehicles and features. Analyzing user sentiments and preferences in real-time can drive innovation and elevate OEMs' customer satisfaction. These insights have the potential to enhance vehicle performance and the manufacturing process. The application employs data collection and Natural Language Processing (NLP) techniques, including User-Driven Sentiment Classification and topic modeling, to analyze user sentiments and identify key discussion topics visually.
Technical Paper

Dynamic Stress-Strain and Fatigue Life Estimation Using Limited Set of Measured Accelerometer Data on Exhaust System Using System Equivalent Reduction and Expansion Process (SEREP)

2024-01-16
2024-26-0251
The dynamic response of structures to operating or occasional loads is crucial for design considerations, as it directly impacts the cumulative fatigue life. In practice, accurately discerning the precise loads and structural conditions, which involve considerations such as boundary conditions, geometry, and mechanical properties, can be quite challenging. Significant efforts are invested in identifying these factors and developing suitable prediction models. Nonetheless, the estimated forces and boundary conditions remain approximations, leading to uncertainties which affects the overall predictions and the analysis of how stress and strain develop in the structure during subsequent evaluations. Many researchers frequently employ a method where they estimate the forces acting on the system based on measurement data obtained at limited number of locations over the structure.
X