Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 35
1986-02-01
Technical Paper
860029
T. K. Hayes, L. D. Savage, S. C. Sorenson
The availability and low price of personal computers with suitable interface equipment has made it practical to use such a system for cylinder pressure data acquisition. With this objective, procedures have been developed to measure and record cylinder pressure on an individual crank angle basis and obtain an average cylinder pressure trace using an Apple II Plus personal computer. These procedures as well as methods for checking the quality of cylinder pressure data are described. A simplified heat release analysis technique for an approximate first look at the data quality is presented. Comparisons are made between the result of this analysis, the Krieger-Borman heat release analysis which uses complete chemical equilibrium. The comparison is made to show the suitability of the simplified analysis in judging the quality of the pressure data.
2011-08-30
Technical Paper
2011-01-2000
Jesper Ahrenfeldt, Ulrik Birk Henriksen, Torben Kvist
Experimental investigations have been conducted with two identical small scale SI gas engines gen-sets operating on biomass producer gas from thermal gasification of wood. The engines where operated with two different compression ratios, one with the original compression ratio for natural gas operation 9.5:1, and the second with a compression ratio of 18.5:1. It was shown that high compression ratio SI engine operation was possible when operating on biomass producer gas from a TwoStage gasifier. The results showed an increase in the electrical efficiency from 31% to 35% when the compression ratio was increased. The influence of ignition timing on emissions was investigated during high compression ratio operation. It was shown that for λ=1.4 the NOx emission decreases by almost a factor 3, when the timing is retarded from 13° to 7° before top dead center.
2014-04-01
Technical Paper
2014-01-1254
Kar Mun Pang, Mehdi Jangi, Xue-Song Bai, Jesper Schramm
Abstract In this reported work, 2-dimsensional computational fluid dynamics studies of n-heptane combustion and soot formation processes in the Sandia constant-volume vessel are carried out. The key interest here is to elucidate how the chemical kinetics affects the combustion and soot formation events. Numerical computation is performed using OpenFOAM and chemistry coordinate mapping (CCM) approach is used to expedite the calculation. Three n-heptane kinetic mechanisms with different chemistry sizes and comprehensiveness in oxidation pathways and soot precursor formation are adopted. The three examined chemical models use acetylene (C2H2), benzene ring (A1) and pyrene (A4) as soot precursor. They are henceforth addressed as nhepC2H2, nhepA1 and nhepA4, respectively for brevity. Here, a multistep soot model is coupled with the spray combustion solver to simulate the soot formation/oxidation processes.
2014-10-13
Journal Article
2014-01-2576
Hiew Mun Poon, Hoon Kiat Ng, Suyin Gan, Kar Mun Pang, Jesper Schramm
This work is an extension to a previously reported work on chemical kinetic mechanism reduction scheme for large-scale mechanisms. Here, Perfectly Stirred Reactor (PSR) was added as a criterion of data source for mechanism reduction instead of using only auto-ignition condition. As a result, a reduced n-hexadecane mechanism with 79 species for diesel fuel surrogate was successfully derived from the detailed mechanism. Following that, the reduced n-hexadecane mechanism was validated under auto-ignition and PSR conditions using zero-dimensional (0-D) closed homogeneous batch reactor in CHEMKIN-PRO software. Agreement was achieved between the reduced and detailed mechanisms in ignition timing predictions and the reduced n-hexadecane mechanism was able to reproduce species concentration profiles with a maximum error of 40%. Accordingly, two-dimensional (2-D) Computational Fluid Dynamic (CFD) simulations were performed to study the spray combustion phenomena within a constant volume bomb.
2014-10-13
Journal Article
2014-01-2900
Muhammed Fasil, Daniel Plesner, Jens Honore Walther, Nenad Mijatovic, Joachim Holbøll, Bogi Bech Jensen
This paper investigates the heat dissipation in the hub motor of an electric two-wheeler using lumped parameter (LP), finite element (FE) and computational fluid dynamic (CFD) models. The motor uses external rotor permanent magnet brushless DC topology and nearly all of its losses are generated in the stator. The hub motor construction restricts the available conductive paths for heat dissipation from the stator to the ambient only through the shaft. In contrast to an internal rotor structure, where the stator winding losses are diffused via conduction, here convection plays a major role in loss dissipation. Therefore, a LP thermal model with improved convection modelling has been proposed to calculate the temperature of the components inside the hub motor. The developed model is validated with the FE thermal model and the test data. In addition, CFD tools has been used to accurately model the internal and the external flow as well as the convective heat transfer of the hub motor.
1992-02-01
Technical Paper
920240
Minggao Yang, S.C. Sorenson
The new generation of electronic Diesel fuel injection systems with special solenoid valves presents a complicated mechanical/electrical system. It involves a combination of mechanical motion, hydraulic pressure wave propagation, and the transient magnetic and electrical processes which interact with other. In this paper, the coupled dynamic behavior of the new system is studied based on a research type electronic pump-pipe-injector system developed by authors. A general physical model is established, which includes other structure types such as the electronic unit injector and the electronic distributor pump system. Traditional mathematical models for conventional mechanical injection system or conventional solenoid valves, alone or simply connected, are not suitable for the new type of injection system. Therefore, a new comprehensive mathematical model is formulated.
1993-03-01
Technical Paper
930768
Patrick Kaidantzis, Per Rasmussen, Michael Jensen, Thomas Vesterholm, Elbert Hendricks
In earlier work it has been shown that a nearly ideal solution to the problem of accurate estimation of the air mass flow to a central fuel injection (CFI) (or throttle body (TBI)) or EFI (or multi-point (MPI)) equipped engine is provided by using a closed loop nonlinear observer for the engine. With proper design this observer was shown to be both accurate and robust with respect to modelling end measurement errors. It is based on a Constant Gain Extended Kalman Filter (CGEKF). Since the publication of this work, another type of observer has emerged in the literature for which claims of great robustness have been made. This observer is based on new developments in the area of nonlinear control theory and is called a Sliding Mode Observer (SMO). In this paper these two types of observers are compared theoretically and experimentally on an engine mounted on a dynamometer. A very aggressive driving scenario is assumed for these tests.
1997-05-01
Technical Paper
971665
Rasmus Christensen, S. C. Sorenson, Michael G. Jensen, Ken Friis Hansen
A naturally aspirated, direct injection diesel engine was modified in order to be run on dimethyl ether (DME), with a conventional pump-line-nozzle system. The effects of various modifications to engine timing and the injection system as well as EGR were experimentally determined. Compared to the original diesel engine, the NOx emissions were reduced by over 70% through the use of suitable timing, lowered injector opening pressure and EGR. Particulate emissions were very low, and represent over a 90% reduction as compared to the original diesel version. The original pump-line-nozzle injection system was found to be not well suited to DME operation, CO and HC emissions were substantially higher due to secondary injections, caused by high pressure oscillations and residual pressure with the DME.
1997-10-01
Technical Paper
972960
Kent Frølund, Jesper Schramm
Engine experiments were carried out on a six cylinder DI-diesel engine using synthetic fuel and lubricant containing no PAH (Polycyclic Aromatic Hydrocarbons) [1]. By selectively doping the fuel and oil with pyrene, the effect of fuel and oil originating PAH on the exhaust emissions could be investigated. The experimental results are analyzed in a new way by suggesting a general transport model for PAH. By estimating as many transport quantities as possible it is attempted to gain knowledge about the most dominant mechanisms. The main finding is not surprisingly that for commercial fuels containing substantial concentrations of PAH, the by far major contributor to exhaust PAH is unburned fuel PAH. The concentration of PAH in the oil sump affects only weakly the PAH concentration in the exhaust for engines operating on commercial fuels. The PAH desorbing from the liner are getting burned efficiently, thereby being insignificant.
1998-02-23
Technical Paper
980784
Martin Müller, Elbert Hendricks, Spencer C. Sorenson
An important paradigm for the modelling of naturally aspirated (NA) spark ignition (SI) engines for control purposes is the Mean Value Engine Model (MVEM). Such models have a time resolution which is just sufficient to capture the main details of the dynamic performance of NA SI engines but not the cycle-by-cycle behavior. In principle such models are also physically based, are very compact in a mathematical sense but nevertheless can have reasonable prediction accuracy. Presently no MVEMs have been constructed for intercooled turbocharged SI engines because their complexity confounds the simple physical understanding and description of such engines. This paper presents a newly constructed MVEM for a turbocharged SI engine which contains the details of the compressor and turbine characteristics in a compact way. The model has been tested against the responses of an experimental engine and has reasonable accuracy for realistic operating scenarios.
1998-02-23
Technical Paper
981065
Per B. Jensen, Mads B. Olsen, Jannik Poulsen, Christian Vigild, Elbert Hendricks
Long term control of the AFR (Air/Fuel Ratio) of spark ignition engines is currently accomplished with a selvoscillating PI control loop. Because of the intake/exhaust time delay, the oscillation frequency and hence bandwidth of this loop is small. This paper describes a new approach to the design of this control loop using a novel observer system. In this way the bandwidth of this important loop is increased by a factor of 2 - 6 times, leading to more accurate overall AFR control. Moreover the observer approach is so robust and allows such feedback levels that it reduces significantly the accuracy required in the calibration of the base fuel control system with which it is be used. It can be used with either conventional- or advanced observer based- base fuel strategies.
1996-10-01
Technical Paper
961977
Rasmus Christensen, Michael Bo Hansen, Jesper Schramm, Mona-Lise Binderup, Vivian Jorgensen
The main purpose of this study was to investigate the influence of diesel engine conditions on the mutagenic activity of the exhaust. Special emphasis was put on investigation of the influence of nitrogen oxides content. Experiments with a diesel engine have been carried out in the laboratory and the emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and particulate matter (PM) have been measured at different engine conditions. The particulate matter was extracted in order to obtain the soluble organic fraction (SOF), and this fraction was analyzed for mutagenic activity in the Salmonella/microsome assay (AMES test). It was found that the mutagenic activity evidently depended on the PAH content (PAH = Polycyclic Aromatic Hydrocarbons) of the exhaust gas rather than the NOx content. However, the percentage of the direct mutagenic activity of the total mutagenic activity increased as the NOx content in the exhaust gas increased.
1997-02-24
Technical Paper
970181
Nikolai Ladegaard, Spencer C. Sorenson, Jesper Schramm, Linda Gratz, Per Stobbe
Studies were performed with three commonly used additive metals, cerium copper, and iron, with a conventional and a low sulfur fuel in order to investigate fuel additive effects on engine particulate emissions before a particulate filter. Measurements were made on a 4 cylinder direct injection diesel engine and included total particulate mass, soluble organic fraction for both fuels, and polynuclear aromatic hydrocarbon emissions for the low sulfur fuel. The cerium based additive reduced the emissions with both fuels, with the largest effect being on the non-SOF fraction. With the other additives and the high sulfur fuel, non-SOF emissions were increased, increasing total particulate emissions. Copper was found to reduce the polynuclear aromatic hydrocarbons, and cerium was found to have the least effect. The use of an SiC wall flow filter reduced particulate and polynuclear aromatic emissions by over 90%.
1992-02-01
Technical Paper
920682
Elbert Hendricks, Thomas Vesterholm
Abstract Mean value engine models (MVEMs) seek to predict dynamically the mean values of important SI engine variables such as the crank shaft speed, the manifold pressure and the theoretical air/fuel ratio (lambda). Previous work also shows that such models can be made quite accurate, both for stationary and transient operating modes. Because these models can be made mathematically simple and compact, they are also tractable for direct mathematical and physical analysis. In this paper an analysis of a mean value engine model is carried out which reveals the underlying structure of the problems which face engine control system designers. In particular it is shown that an SI engine is extremely nonlinear and time dependent. Because of this, conventional control strategies using conventional sensors cannot be made to operate correctly in the transient regime. An “ideal” nonlinear compensator is also described for the fueling dynamics which works over a wide operating range.
1992-02-01
Technical Paper
920626
Minggao Yang, S.C. Sorenson
The pump-pipe-injector-injection system is the most commonly used type of injection equipment for Diesel engines. In order to be compatible with digital engine control, this system needs to be modified. The resulting fuel injection system should have the following characteristics: mechanical simplicity, direct control capability and low cost. Based on these requirements, the direct digital control of the pump-pipe-injector injection system has been investigated. A new solenoid control valve has been designed to simultaneously control the injection timing, fuel quantity and hydraulic performance. The conventional jerk-pump is very much simplified. A research type control unit based on a PC has been developed. The system has the possible configuration of electronic pump-pipe-valve-injector and electronic pump-valve-pipe-injector. The system was designed and analyzed on the basis of a comprehensive mechanical - magnetic - electrical - hydraulic computer simulation of the system.
1994-03-01
Technical Paper
940974
Lars Kjergaard, Steffen Nielsen, Thomas Vesterholm, Elbert Hendricks
One of the most important operating modes for SI engines is in the idle speed region. This is because SI engines spend a large part of their time operating in this mode. Moreover, a large measure of operator satisfaction is dependent on an engine operating smoothly and reliably in and around idle. In particular the operator expects that the idle speed will remain constant in spite of the engine loads due to power steering pumps and air conditioning compressors. In the idle speed region an SI engine is thought to be quite nonlinear because the engine loading can be quite significant, thus forcing the engine to be driven through a reasonably large portion of its lower operating range. Many of the earlier studies of idle speed control systems have dealt with linearized models which in principle have limited validity for the problem at hand. In order to improve this situation, it is necessary to deal with the more general nonlinear control problem.
1995-02-01
Technical Paper
950151
Jakob W. Høj, S. C. Sorenson, Per Stobbe
Silicon Carbide (SiC) has been shown to have a high melting/decomposition temperature, good mechanical strength, and high thermal conductivity, which make it well suited for use as a material for diesel particulate filters. The high thermal conductivity of the material tends to reduce the temperature gradients and maximum temperature which arise during regeneration. The purpose of this paper is to experimentally investigate the thermal loading which arise under regenerations of varying severity. An experimental study is presented, in which regenerations of varying severity are conducted for uncoated SiC and Cordierite filters. The severity is varied through changes in the particle loading on the filters and by changing the flow conditions during the regeneration process itself. Temperature distributions throughout the filters are measured during these regeneration.
1995-02-01
Technical Paper
950008
Elbert Hendricks, Alain Chevalier, Michael Jensen
In an earlier paper, some of the authors of this paper pointed out some of the difficulties involved in event based engine control. In particular it was shown that event based (or constant crank angle) sampling is very difficult to carry out without running into aliasing and sensor signal averaging problems. This leads to errors in reading the air mass flow related sensors and hence inaccurate air/fuel ratio control. The purpose of this paper is first to demonstrate that the conjectures about the operator input spectrum in a vehicle do actually obtain during vehicle operation in realistic road situations. A second purpose is to extend earlier modelling work and to present an approximate physical method of predicting the level of engine pumping fluctuations at any given operating point. The physical method given is based on a modification of the Mean Value Engine Model (MVEM) of a Spark Ignition (SI) engine presented previously.
1996-02-01
Technical Paper
960037
Elbert Hendricks, Alain Chevalier, Michael Jensen, Spencer C. Sorenson, Dave Trumpy, Joe Asik
Mean Value Engine Models (MVEMs) are dynamic models which describe dynamic engine variable (or state) responses as mean rather than instantaneous values on time scales slightly longer than an engine event. Such engine variables are the independent variables in nonlinear differential (or state) equations which can be quite compact but nevertheless quite accurate. One of the most important of the differential equations for a spark ignition (SI) engine is the intake manifold filling (often manifold pressure) state equation. This equation is commonly used to estimate the air mass flow to an SI engine during fast throttle angle transients to insure proper engine fueling. The purpose of this paper is to derive a modified manifold pressure state equation which is simpler and more physical than those currently found in the literature. This new formulation makes it easier to calibrate a MVEM for different engines and provides new insights into dynamic SI engine operation.
2007-10-29
Technical Paper
2007-01-4008
Ulrik Larsen, Peter Lundorf, Anders Ivarsson, Jesper Schramm
The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline.
2008-06-23
Technical Paper
2008-01-1535
Kim R. Hansen, Claus S. Nielsen, Spencer C. Sorenson, Jesper Schramm
The low auto-ignition temperature, rapid evaporation and high cetane number of dimethyl ether (DME) enables the use of low-pressure direct injection in compression ignition engines, thus potentially bringing the cost of the injection system down. This in turn holds the promise of bringing CI efficiency to even the smallest engines. A 50cc crankcase scavenged two-stroke CI engine was built based on moped parts. The major alterations were a new cylinder head and a 100 bar DI system using a GDI-type injector. Power is limited by carbon monoxide emission but smoke-free operation and NOx < 200ppm is achieved at all points of operation.
2007-07-23
Technical Paper
2007-01-1921
Keld Johansen, Søren Dahl, Gurli Mogensen, Søren Pehrson, Jesper Schramm, Anders Ivarsson
A novel base metal-palladium catalytic coating was applied on commercial silicon carbide wall flow diesel filters and tested in an engine test bench. This catalytic coating limits the NO2 formation and even removes NO2 within a wide temperature range. Soot combustion, HC conversion and CO conversion properties are comparable to current platinum-based coatings, but at a lower cost. This paper compares the results from engine bench tests of present commercial solutions as regards NO2-, HC-, CO-removal and soot combustion with the novel coating. Furthermore, emission test results from base metal-palladium coated diesel particulate filters installed on operating taxis and related test cycle data are presented. A significant reduction in NO2 emission compared to present technology is measured.
2007-07-23
Technical Paper
2007-01-1860
Troels Dyhr Pedersen, Jesper Schramm
An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly.
2016-04-05
Journal Article
2016-01-0734
Scott A. Skeen, Julien Manin, Lyle M. Pickett, Emre Cenker, Gilles Bruneaux, Katsufumi Kondo, Tets Aizawa, Fredrik Westlye, Kristine Dalen, Anders Ivarsson, Tiemin Xuan, Jose M Garcia-Oliver, Yuanjiang Pei, Sibendu Som, Wang Hu, Rolf D. Reitz, Tommaso Lucchini, Gianluca D'Errico, Daniele Farrace, Sushant S. Pandurangi, Yuri M. Wright, Muhammad Aqib Chishty, Michele Bolla, Evatt Hawkes
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
2011-09-11
Technical Paper
2011-24-0181
Rasmus Cordtz, Anders Ivarsson, Jesper Schramm
This work presents the experimental investigation of Diesel Particulate Filter (DPF) regeneration and a calibration procedure of a 1D DPF simulation model based on the commercial software AVL BOOST v. 5.1. Model constants and parameters are fitted on the basis of a number of steady state DPF experiments where the DPF is exposed to real engine exhaust gas in a test bed. The DPF is a silicon carbide filter of the wall flow type without a catalytic coating. A key task concerning the DPF model calibration is to perform accurate DPF experiments because measured gas concentrations, temperatures and soot mass concentrations are used as model boundary conditions. An in-house-developed raw exhaust gas sampling technique is used to measure the soot concentration upstream the DPF which is also needed to find the DPF soot burn rate.
2000-03-06
Technical Paper
2000-01-1261
Alain Chevalier, Martin Müller, Elbert Hendricks
Because there are no production-type sensors which are able to measure the flow directly at the intake port, it is becoming common practice to use models of varying complexity to infer the port air mass flow from other measurements. Given the tight requirements of modern air/fuel ratio (AFR) control strategies, the accuracy of these models needs to be better than ever, during steady-state of course (though λ feedback strategies are by design very robust), but mainly during transient operation. This paper describes why conventional models might be inaccurate during engine transients.
2000-03-06
Technical Paper
2000-01-0260
Alain Chevalier, Christian Winge Vigild, Elbert Hendricks
With the tightening of exhaust emission standards, wide bandwidth control of the air/fuel ratio (AFR) of spark ignition engines has attracted increased interest recently. Unfortunately, time delays associated with engine operation (mainly injection delays and transport delays from intake to exhaust) impose serious limitations to the achievable control bandwidth. With a proper choice of sensors and actuators, these limitations can be minimized provided the port air mass flow can be accurately predicted ahead in time. While the main objective of this work is to propose a complete AFR controller, the main focus is on the problems associated with port air mass flow prediction.
2000-10-16
Technical Paper
2000-01-2823
C. Søgaard, J. Schramm, T. K. Jensen
Application of a known hydrogen containing fuel called reformed natural gas (RNG) has been realized in a stationary combustion engine with success. The aim for this is to reduce unburned hydrogen emissions (UHC) from the engine together with an increase in efficiency. The fuel contains mainly methane, hydrogen and minor amounts of carbon dioxide. A small-scale unit for onboard production of RNG has been built in order to avoid the dependence of artificial supplementation of hydrogen. The production is carried out through means of steam reforming of natural gas. The RNG-unit together with theoretical considerations for estimating fuel composition and issues of caution are described. Theoretical studies show a potential for varying the hydrogen content between 8 and 30 vol%. Studies also show potential for remarkable increases in the methane number relative to that of the natural gas. A test engine has been fueled with RNG.
2001-05-07
Technical Paper
2001-01-2013
Ion M. Sivebaek, Spencer C. Sorenson, Joergen Jakobsen
This paper describes the development and test of a viscometer capable of handling dimethyl Ether (DME) and other volatile fuels. DME has excellent combustion characteristics in diesel engines but the injection equipment can break down prematurely due to extensive wear when handling this fuel. It was established, in earlier work, that the wear in the pumps is substantial even if the lubricity of DME is raised to a believed acceptable level using anti-wear additives. An influence of the viscosity on the wear in the pumps was suspected. The problem, up to now, was that the viscosity of DME has only been estimated or calculated but never actually measured. In the present work a volatile fuel viscometer (VFVM) was developed. It is of the capillary type and it was designed to handle DME, neat or additised. The kinematic and dynamic viscosities of pure DME were measured at 0.185 cSt and 0.122 cP at 25 °C respectively.
1999-03-01
Technical Paper
1999-01-0909
Michael Fons, Martin Muller, Alain Chevalier, Christian Vigild, Elbert Hendricks, Spencer C. Sorenson
Mean Value Engine Models (MVEMs) are simplified, dynamic engine models which are physically based. Such models are useful for control studies, for engine control system analysis and for model based engine control systems. Very few published MVEMs have included the effects of Exhaust Gas Recirculation (EGR). The purpose of this paper is to present a modified MVEM which includes EGR in a physical way. It has been tested using newly developed, very fast manifold pressure, manifold temperature, port and EGR mass flow sensors. Reasonable agreement has been obtained on an experiemental engine, mounted on a dynamometer.
Viewing 1 to 30 of 35

Filter

  • Range:
    to:
  • Year: