Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Journal Article

Design with Uncertain Technology Evolution

2012-04-16
2012-01-0912
A major decision to make in design projects is the selection of the best technology to provide some needed system functionality. In making this decision, the designer must consider the range of technologies available and the performance of each. During the useful life of the product, the technologies composing the product evolve as research and development efforts continue. The performance evolution rate of one technology may be such that even though it is not initially a preferably technology, it becomes a superior technology after a few years. Quantifying the evolution of these technologies complicates the technology selection decision. The selection of energy storage technology in the design of an electric car is one example of a difficult decision involving evolving technologies.
Technical Paper

Performance Parameter Analysis of a Biodiesel-Fuelled Medium Duty Diesel Engine

2009-04-20
2009-01-0481
Biodiesel remains an alternative fuel of interest for use in diesel engines. A common characteristic of biodiesel, relative to petroleum diesel, is a lowered heating value (or energy content of the fuel). A lower heating value of the fuel would, presuming all other parameters are equal, result in decreased engine torque. Since engine torque is often user-demanded, the lower heating value of the fuel generally translates into increased brake specific fuel consumption. Several literature report this characteristic of biodiesel. In spite of the wealth of fuel consumption characteristic data available for biodiesel, it is not clear how other engine performance parameters may change with the use of biodiesel. Characterizing these parameters becomes complicated when considering the interactions of the various engine systems, such as a variable geometry turbocharger with exhaust gas recirculation.
Technical Paper

Investigation of High-Energy and High-Power Hybrid Energy Storage Systems for Military Vehicle Application

2003-06-23
2003-01-2287
Military and civilian vehicles are moving towards more electrification, in response to the increasing demand for multi-mode missions, fuel consumption and emissions reduction, and dual use electrical and electronic components. Consequently, the vehicle electric load is increasing rapidly. For military vehicles, these electrical loads include: the loads for electric traction (EV and HEV), cabin climate conditioning, vehicle control and actuation, actuation by wire (X by wire), sensors, reconnaissance, communications, weapons etc. All these requirements need to be supported by an efficient, fast responding and high capacity energy storage system. The electric load of a vehicle can be decomposed into two components--- static and dynamic loads. The static component is slowly varying power with limited magnitude, whereas the dynamic load is fast varying power with large magnitude. The energy storage system, accordingly, comprises of two basic elements.
Technical Paper

A Driving Situation Awareness-Based Energy Management Strategy for Parallel Hybrid Vehicles

2003-06-23
2003-01-2311
A concept of “driving situation awareness”-driven energy management system for parallel hybrid electric vehicles (HEVs) is introduced. The essential feature of the proposed energy management system is to assess the driving environment (in terms of facility type combined with traffic congestion level) using long and short term statistical features of the drive cycle. Subsequently, this knowledge is provided to a system that makes intelligent decisions with respect to the torque distribution and charge sustenance tasks. Simulation work was carried out for the validation of proposed system, and the results reveal its viability for energy management of parallel hybrid vehicles.
Technical Paper

Investigation of Proper Motor Drive Characteristics for Military Vehicle Propulsion

2003-06-23
2003-01-2296
Due to their harsh operating environments, military vehicle drive trains have special requirements. These special requirements are usually represented by hill climbing ability, obstacle negotiation, battlefield cross country travel, hard acceleration, high speed, etc. These special requirements need the vehicle drive train to have a wider torque and speed range characteristics than commercial vehicles. We have proved that larger constant power ratio in electric motor can significantly enhance the vehicle acceleration performance. In other words, for the same acceleration performance, large constant power ratio can minimize the power rating of the traction motor drive, thus minimizing the power rating of the power source (batteries for instance). Actually, extension of the constant power range can also significantly enhance the gradeability, which is crucial for military vehicles.
Technical Paper

Estimation of Pushrod Stroke in an Air Brake System with Parametric Uncertainty

2011-04-12
2011-01-0751
In this paper, we consider the problem of designing an algorithm for estimating the stroke of a pushrod in the presence of uncertainty in the area of the treadle valve. The stroke of pushrod directly relates to the braking force available at the wheels and also affects the response time. The longer the stroke, the volume available for expansion is larger and correspondingly, the response is slower. The stroke depends on the clearance between the brake pad and the drum, which can vary due to variety of factors such as thermal expansion of drum and mechanical wear. Typical safety inspections of air brakes include the measurement of the stroke of the pushrod of each brake chamber. Regulations on trucks such Federal Motor Vehicle Safety Standard (FMVSS) 121 require the inspection to be carried out at 90 psi supply pressure and at full brake application.
Technical Paper

Improvement in Spark-Ignition Engine Fuel Consumption and Cyclic Variability with Pulsed Energy Spark Plug

2012-04-16
2012-01-1151
Conventional spark plugs ignite a fuel-air mixture via an electric-to-plasma energy transfer; the effectiveness of which can be described by an electric-to-plasma energy efficiency. Although conventional spark plug electric-to-plasma efficiencies have historically been viewed as adequate, it might be wondered how an increase in such an efficiency might translate (if at all) to improvements in the flame initiation period and eventual engine performance of a spark-ignition engine. A modification can be made to the spark plug that places a peaking capacitor in the path of the electrical current; upon coil energizing, the stored energy in the peaking capacitor substantially increases the energy delivered by the spark. A previous study has observed an improvement in the electric-to-plasma energy efficiency to around 50%, whereas the same study observed conventional spark plug electric-to-plasma energy efficiency to remain around 1%.
Technical Paper

Effect of Extended-Speed, Constant-Power Operation of Electric Drives on the Design and Performance of EV-HEV Propulsion System

2000-04-02
2000-01-1557
Vehicle dynamics requires extended-speed, constant-power operation from the propulsion system in order to meet the vehicle's operating constraints (e.g., initial acceleration and gradeability) with minimum power. Decrease in power rating will decrease the volume of the energy storage system. However, extending the constant power operating range of the electric drives increases its rated torque, thereby, increasing motor volume and weight. This paper investigates the effect of extended constant power operation on battery driven electric vehicle (BEV) propulsion system taking the change in motor weight and battery volume into account. Five BEV systems with five traction drive having different base speeds are simulated for this study. The performances of the BEVs are obtained using FUDS and HWYFET drive cycles. Two EV-HEV software packages ‘V-ELPH’ developed by Texas A&M University and ‘ADVISOR’ from NREL are used for simulation testing.
Technical Paper

A Charge Sustaining Parallel HEV Application of the Transmotor

1999-03-01
1999-01-0919
An electromechanical gear is presented along with design examples utilizing the electromechanical gear in hybrid electric vehicle drive trains. The designs feature the electromechanical gear (the Transmotor) in place of traditional mechanical transmissions and/or gearing mechanisms. The transmotor is an electric motor suspended by its shafts, in which both the stator and the rotor are allowed to rotate freely. The motor thus can provide positive or negative rotational energy to its shafts by either consuming or generating electrical energy. A design example is included in which the transmotor is installed on the output shaft of an internal combustion engine. In this arrangement the transmotor can either increase or decrease shaft speed by applying or generating electrical power, allowing the ICE to operate with a constant speed.
Technical Paper

Electrical System Architectures for Future Aircraft

1999-08-02
1999-01-2645
This paper addresses the fundamental issues faced in the aircraft electrical system architectures. Furthermore, a brief description of the conventional and advanced aircraft power system architectures, their disadvantages, opportunities for improvement, future electric loads, role of power electronics, and present trends in aircraft power system research will be given. Finally, this paper concludes with a brief outline of the projected advancements in the future.
Technical Paper

The Remarkable Turbomachinery-Rotordynamics Developments During the Last Quarter of the 20th Century

2015-09-15
2015-01-2487
Rotordynamics developed from the beginning of the 20th century to deal with problems associated with steam turbines. This paper deals with intense developments starting around 1975 through 2000 in rotordynamics to deal with new, larger machines running at higher speeds and higher power levels. Most of the new problems of interest dealt with subsynchronous instabilities. Issues associated with “synchromnously unstable” motion due to the Morton Effect is also reviewed.
X