Refine Your Search

Topic

Author

Search Results

Journal Article

Tire Model Application and Parameter Identification-A Literature Review

2014-04-01
2014-01-0872
A tire may be one of the most critical and complex components in vehicle dynamics and road loads analyses because it serves as the only interface between the road surface and the vehicle. Extensive research and development activities about vehicle dynamics and tire models have been published in the past decades, but it is still not clear about the applications and parameter identification associated with all of these tire models. In this literature review study, various published tire models used for vehicle dynamics and road loads analyses are compared in terms of their modeling approaches, applications and parameters identification process and methodologies. It is hoped that the summary of this literature review work can help clarify and guide the future research and development direction about tire modeling.
Technical Paper

Optimization of Piston-Ring System for Reducing Lube Oil Consumption by CAE Approach

2020-04-14
2020-01-1339
A CAE-based optimization method is developed for Lube Oil Consumption (LOC) analysis of the piston-ring system. With accurate thermodynamic boundary conditions from 1D engine combustion simulation, piston motion, dynamics of piston ring, and characteristics of oil consumption are simulated using AVL Piston&Ring. The model is validated by comparing with available test data. Good match is achieved. The model is then applied to a diesel engine. The root cause of excessive LOC of the engine has been identified through CAE. The improved understanding has been applied to optimize the piston and piston ring. Engine dyno test, 1200-hour engine durability test, and 45000-kilometer vehicle test have been conducted to validate the optimized design. The experiment results are in good agreement with CAE predictions, and the oil consumption has been improved over the original design.
Technical Paper

A Two-Layer Soot Model for Hydrocarbon Fuel Combustion

2020-04-14
2020-01-0243
Experimental studies of soot particles showed that the intensity ratio of amorphous and graphite layers measured by Raman spectroscopy correlates to soot oxidation reactivities, which is very important for regeneration of the diesel particulate filters and gasoline particulate filters. This physical mechanism is absent in all soot models. In the present paper, a novel two-layer soot model was proposed that considers the amorphous and graphite layers in the soot particles. The soot model considers soot inception, soot surface growth, soot oxidation by O2 and OH, and soot coagulation. It is assumed that amorphous-type soot forms from fullerene. No soot coagulation is considered in the model between the amorphous- and graphitic-types of soot. Benzene is taken as the soot precursor, which is formed from acetylene. The model was implemented into a commercial CFD software CONVERGE using user defined functions. A diesel engine case was simulated.
Technical Paper

Determination of Magic Formula Tyre Model Parameters Using Homotopy Optimization Approach

2020-04-14
2020-01-0763
Tyre behavior plays an important role in vehicle dynamics simulation. The Magic Formula Tyre Model is a semi-empirical tyre model which describes tyre behavior quite accurately in the handling simulation. The Magic Formula Tyre Model needs a set of parameters to describe the tyre properties; the determination of these parameters is nontrivial task due to its nonlinear nature and the presence of a large number of coefficients. In this paper, the homotopy algorithm is applied to the parameter identification of Magic Formula tyre model. A morphing parameter is introduced to correct the optimization process; as a result, the solution is directed converging to the global optimal solution, avoiding the local convergence. The method uses different continuation methods to globally optimize the parameters, which ensures that the prediction of the Magic Formula model can be very close to the test data at all stages of the optimization process.
Technical Paper

Transport Processes within a Hollow Fiber Membrane Reactor: Mass Transfer and Hydrodynamics

2007-07-09
2007-01-3093
Hollow fiber membrane reactors (HFMBRs) may be used for biological wastewater treatment, and may be integrated with NASA's current research developments. The goal of this paper is to (a) evaluate the effect of mass transfer and hydrodynamics in a microporous HFMBR and (b) appropriateness of HFMBRs for use in space applications. Even though bubble-less aeration was not achieved by the use of microporous membranes, mass transfer within the HFMBR was found to increase after biofilm formation. Conversely, convective flow dominated transport within the system. Despite the high treatment efficiency obtained by the HFMBR, due to the bioreactor size, configuration and membrane spacing within the HFMBR, the bioreactor was not a suitable option for application under microgravity conditions. Even though developing a system with more favorable system hydrodynamics would aid in treatment efficiency, the use of a microporous HFMBR is not a recommended option to meet NASA's needs.
Technical Paper

Evaluation of a Microgravity Compatible Membrane Bioreactor for Simultaneous Nitrification/Denitrification

2007-07-09
2007-01-3094
The feasibility of a long-term space mission is partially reliant upon the ability to effectively recycle wastewater. Merged biological and physiochemical processes (integrated water recovery systems (IWRS)) are capable of producing potable water at lower equivalent system mass (ESM) than treatment systems composed of only physiochemical processes. Reducing the ESM of the water recycling units can increase the practicality of extended space missions by decreasing payload weight. In order to lower the ESM of the biological pre-treatment component, a single-stage biological reactor capable of simultaneous carbon and nitrogen removal was created by modifying the membrane-aerated biofilm reactor (MABR) design. Studies were performed in order to evaluate the water quality performance of this reactor.
Technical Paper

Determining the Effect of Usage and Biota Upon Oxygen Flux Across Tubular Silicone Membranes

2007-07-09
2007-01-3092
Hollow fiber membranes aerate wastewater without bubble formation by separating the liquid and gases phases with a semi-permeable membrane. These membranes have shown to successfully create aerobic conditions within a biological reactor. This research investigated the effect of long term usage and biofilm growth on membrane's ability to transfer oxygen to solution. Results show that oxygen transfer across the membrane decreased significantly compared to unused membranes in areas of high biofilm growth while low biofilm growth showed only slight decreases.
Technical Paper

Selenium Coating of Water Distribution Tubing to Inhibit Biofilm

2008-06-29
2008-01-2158
Microbial control in closed environmental systems, such as those of spacecraft or proposed base missions is typically limited to disinfection in the potable water system by a strong chemical agent such as iodine or chlorine. However, biofilm growth in the environmental system tubing threatens both the sterility of the potable water distribution as well as operational problems with wastewater systems. In terrestrial systems, biofilm has been recognized for its difficulty to control and eliminate as well as resulting operational problems. In order to maintain a potable water source for crew members as well as preventing operational problems in non-sterile systems, biofilm needs to be considered during system design. While biofilm controls can limit biofilm buildup, they are typically disruptive and cannot completely eliminate biofilm. Selenium coatings have shown to prevent initial biofilm attachment as well as limit attached growth on a variety of materials.
Technical Paper

Applying Principles of Axiomatic Design to a Transdisciplinary Academic Program to Educate Skilled Workers for all Levels of the Automotive Industry

2008-04-14
2008-01-0751
This paper describes the use of axiomatic design to create an academic program which targets the needs of the automotive industry-especially local industry. Creative and innovative engineers and technicians are needed to design, develop, and maintain the vehicles and transportation systems of the future. The design of a new program is presented using axiomatic design to establish multiple levels of customer needs, functional requirements (FRs), associated design parameters (DPs), and resulting design matrices (DMs) that clearly define the program. The curriculum for a two-year automotive technology program is enhanced by partnering with a four-year mechanical engineering program, local and national industries, and local secondary school programs. The paper also discusses potential complexities of the proposed program design and implementation and mitigation strategies.
Technical Paper

Finite Element Analysis for the Interface of a Respirator and the Human Face -A Pilot Study

2009-06-09
2009-01-2271
Comfort assessment of respirator fit plays an important role in the respirator design process and standard development. To reduce the cost and design time of respirators, the design, fit, and evaluation process can be performed in a virtual environment. Literature shows that respirator-induced discomfort relates to stress, area, and region of the face covered. In this work, we investigate the relationship between the strap tensions and the stress and deformation distribution on the interface between the respirator and the headform. This is the first step towards a comprehensive understanding of the contribution of contact stress to the mathematical comfort fit model. The 3D digital models for respirators and headforms have been developed based on 3D scanning point-cloud using a Cyberware® 3D digitizer. Five digital headform models have been generated: small, medium, large, long and short.
Technical Paper

An Optimum Biological Reactor Configuration for Water Recycling in Space

2009-07-12
2009-01-2564
Biological pre-treatment of early planetary/lunar base wastewater has been extensively studied because of its predicted ability to offer equivalent system mass (ESM) savings for long term space habitation. Numerous biological systems and reactor types have been developed and tested for treatment of the generally unique waste streams associated with space exploration. In general, all systems have been designed to reduce organic carbon (OC) and convert organic nitrogen (ON) to nitrate and/or nitrite (NOx -). Some systems have also included removal of the oxidized N in order to reduce overall oxygen consumption and produce additional N2 gas for cabin use. Removal of organic carbon will generally reduce biofouling as well as reduce energy and consumable cost for physiochemical processors.
Technical Paper

Musculoskeletal Loading During Gravitational Transitions Improvements in Postural Control

2003-07-07
2003-01-2493
Long-duration space travel will require improvements in exercise countermeasures so that astronauts are able to maintain cardiovascular fitness, bone mass and the ability to perform coordinated movements in a terrestrial environment following extended periods of “near weightlessness” encountered during transit to and/or obit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. Current data suggests that specific, short duration musculoskeletal loading, following running in simulated Martian gravity using a vertical suspension type simulator, reduces the time required for re-adapting to steady-state performance of the postural control system during a novel, treadmill based precision stepping task. Possible enhancements to the current exercise countermeasures program are suggested.
Technical Paper

Determination of the Fate and Behavior of a Commercial Surfactant in a Water Recycle System (WRS)

2003-07-07
2003-01-2558
Bioreactor studies and microcosm experiments were conducted to determine the degradation potential of a commercial cleansing formulation. With the possible replacement of the current cleansing formulation under consideration (Ecolab whole body shampoo containing Igepon TC-42™ as an active ingredient), determination of the degradation characteristics of the alternative formulation is necessary. The commercial formulation currently being evaluated is a modified version of Pert Plus® for Kids (PPK). The degradation potential of the PPK and main surfactant Sodium Laureth Sulfate (SLES) was determined in a packed bed denitrifying bioreactor. Results from the bioreactor studies led to the development of stoichiometric relationships to help predict and monitor SLES degradation. In addition to the degradation rates of Ecolab, the PPK formulation, as well as the four leading constituents contained in the PPK formulation was determined under denitrifying conditions in microcosm studies.
Technical Paper

Nitrification using a Membrane-Aerated Biological Reactor

2003-07-07
2003-01-2559
When compared to physical and chemical processes for wastewater treatment in space, the benefits of biological systems include reduced storage and handling of waste material, lower energy requirements and plant growth system compatibility. An advanced membrane reactor (AMR) was constructed to treat ammonium-rich simulated wastewater. The effluent pH was approximately 6.3, and ammonium and TOC reduction rates were greater than 60 percent and 99 percent, respectively. The experimental results demonstrate that this technology may be suitable for space applications. However, the long-term performance of these systems should be investigated.
Technical Paper

Performance of a Small Scale Biological Water Recovery System

2003-07-07
2003-01-2557
The objective of this study was to evaluate the treatment efficiency and reliability of a small-scale (1/20th) replica of the JSC biological treatment system over an extended period of time (18 months of operation). The two biological reactor components were an anaerobic packed bed for denitrification and an aerobic tubular reactor for nitrification. A recycle line (20X) linked the two biological reactors. Effectiveness of the biological system to treat a waste stream (1 L/day) containing water, urine, and soap (Igepon T42) was quantified by monitoring total nitrogen and organic carbon. Distribution of nitrogen in the effluent was measured and consisted of ammonium, nitrite, and nitrate. Daily concentrations of total nitrogen in the influent varied greatly. The system achieved 50% removal of total nitrogen and 80% removal of the influent organic carbon. The results indicate improved treatment effectiveness and resiliency with time.
Technical Paper

Biologically Treated Wastewater for NFT Plant Production in Space

2003-07-07
2003-01-2681
This research compared the nutrient content of the Biological Water Processor (BWP) effluent at JSC with acceptable nutrient ranges for general hydroponic NFT-solutions. Evaluated nutrient-components were NO3-N, P, K, Ca, Mg, Fe, Mn, Zn, B, Cu and Mo. Compared to Cooper's and Molyneaux's solution (Jones, 1997) BWP-nutrient concentrations were low for Ca, Mg, Fe and B. Compared to the NFT-solution used at KSC (Wheeler et al., 1997), the BWP-effluent showed higher contents of P, K, Zn, Cu and Mo and lower contents of N, Ca, Mg, Fe and B. This indicates that the BWP-effluent could support NFT-plant production.
Technical Paper

Design and Development of the Texas Tech Fuel Cell Powered FutureTruck

2003-03-03
2003-01-1262
Texas Tech University's FutureTruck team has converted a stock 2002 Ford Explorer™ to a fuel cell powered hybrid-electric vehicle to enter into the 2002 FutureTruck Challenge. The internal combustion engine was replaced with a Honeywell manufactured hydrogen fuel cell. The fuel cell requires hydrogen, oxygen, and de-ionized (DI) water systems to produce power. Two AC induction motors drive the vehicle and there are two 270VDC nickel metal hydride (NiMH) battery packs to store energy. Water, heat, air and small amounts of hydrogen are the only emissions of the vehicle, which is the main benefit of the conversion. The team also sought to maintain, as much as possible, the comforts and performance options a driver would enjoy on a stock vehicle.
Technical Paper

A Novel Continuously Variable Desmodromic Engine Valve Timing Mechanism

1991-02-01
910452
This paper introduces and illustrates the design concepts of a novel continuously-variable valve duration and timing mechanism. This totally mechanical design is adaptable to existing spring-loaded poppet valve systems and may also be used in desmodromic form. The design can simultaneously and/or independently control intake and exhaust valve opening and closing, allowing the valve duration window to be moved to any point in the operating cycle of the engine. Preliminary calculations of the optimum cam profile for this mechanism were obtained using a computerized engine-simulation program.
Technical Paper

Formulation of Human Performance Measures for Full Body Pregnant Women Standing Posture Prediction

2011-04-12
2011-01-0062
Digital human modeling and posture prediction can only be used as a design tool if the predicted postures are realistic. To date, the most realistic postures have been realized by simultaneously optimizing human performance measures (HPMs). These HPMs currently consist of joint discomfort, delta potential energy, and visual displacement. However these HPMs only consider the kinematics of human posture. Dynamic aspects of human posture such as external loads and mass of limbs have not yet been considered in conjunction with the current HPMs. This paper gives the formulation for a new human performance measure combination including the use of joint torque to account for the dynamics of human posture. Postures are then predicted using multi-objective optimization (MOO) techniques to optimize the combination of the new HPM and the current. The predicted postures are then compared with the benchmark postures which are those obtained from using the current HPMs only.
Technical Paper

In-Plane Parameter Relationship between the 2D and 3D Flexible Ring Tire Models

2017-03-28
2017-01-0414
In this paper, a detailed three dimensional (3D) flexible ring tire model is first proposed which includes a rigid rim with thickness, different layers of discretized belt points and a number of massless tread blocks attached on the belt. The parameters of the proposed 3D tire model can be divided into in-plane parameters and out-of-plane parameters. In this paper, the relationship of the in-plane parameters between the 3D tire model and the 2D tire model is determined according to the connections among the tire components. Based on the determined relationship, it is shown that the 3D tire model can produce almost the same prediction results as the 2D tire model for the in-plane tire behaviors.
X