Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 167
2011-04-12
Technical Paper
2011-01-0521
Landon Onyebueke, Akindeji Ojetola, Edward Winkler
This paper presents a PC based mathematical and rapid prototyping technique for anthropometric accommodation in a maintenance environment using the principle of simulation based design. The developed technique is capable of analyzing anthropometric data using multivariate (Principal component Analysis) approach to describe the body size variability of any given population. A number of body size representative cases are established which, when used properly within the constraints of the maintenance environments, will ensure the accommodation of a desired percentage of a population. This technique evaluates the percentage accommodation of a given population for the environment using the specific manikin cases as boundary conditions. In the case where any member of a maintenance crew cannot be accommodated, the technique has the capability of informing the designer of the environment why the member(s) is/are not accommodated.
2004-09-21
Technical Paper
2004-01-2817
Donald D. Palmer, Roger W. Engelbart, Christopher M. Vaccaro
One of the key elements of increasing the affordability of major weapons systems is reducing costs associated with manufacturing. Nondestructive evaluation (NDE) is a critical element of the manufacturing process and one that cannot be compromised. A key goal associated with NDE research and development is to help reduce the cost associated with quality assurance. In relation to composite structures, this is being approached from several directions, two of which will be discussed. The approach most frequently used for inspection of composite parts is to pull the parts out of the manufacturing cells and route them to a centralized quality assurance area for inspection. This approach leads to accumulation of non-recurring costs for tooling/fixturing to support the inspection and significant additions to production flow time. An alternative would be to develop nondestructive evaluation processes that can be performed in the manufacturing cells.
2004-07-19
Technical Paper
2004-01-2326
William Atwell, Lawrence W. Townsend, Thomas Miller, Christina Campbell
The highly successful Galileo mission made a number of startling and remarkable discoveries during its eight-year tour in the harsh Jupiter radiation environment. Two of these revelations were: 1) salty oceans lying under an icy crust of the Galilean moons: Europa, Ganymede and Callisto, and 2) the possible existence or remnants of life, especially on Europa, which has a very tenuous atmosphere of oxygen. Galileo radiation measurement data from the Energetic Particle Detector (EPD) have been used (Garrett et al., 2003) to update the trapped electron environment model, GIRE: Galileo Interim Radiation Environment, in the range of L (L: McIlwain parameter – see ref. 6) = 8–16 Rj (Rj: radius of Jupiter ≈ 71,400 km) with plans to extend the model for both electrons and protons as more data are reduced and analyzed.
2011-04-12
Technical Paper
2011-01-0806
Akindeji Ojetola, Landon Onyebueke, Edward Winkler
Jet fighter missions have been known to last extended period of time. The need for a comfortable and safe seat has become paramount considering that fact that uncomfortable seats can lead to numerous health issues. Several health effects like numbness, pressure sore, low back pain, and vein thrombosis have been associated with protracted sitting. The cushion, and of late the installation rail angle are the only components of the ejection seat system that can be modified to reduce these adverse effects. A comprehensive static comfort evaluation study for ejection seats was conducted. It provides comparison between a variety of operational and prototype cushions (baseline cushion, honeycomb and air-cushion) and three different installation rail angles (14°, 18°, and 22°). Three operational cockpit environment mockups with adjustable installation rail angle were built. Ten volunteer subjects, six females and four males, ages 19 to 35, participated in the seat comfort evaluation.
1999-10-06
Technical Paper
1999-01-3447
Ali Salour, James Cunov
This paper covers issues related to the installation, testing, and production implementation of a large-scale automated wing drilling/fastener installation system. Emphasis is placed on describing the production process, foundation requirements, axes alignment, calibration, testing and implementation. Description will include key hardware features such as the multi-function end effector and spindle end effector. The objective is to convey the complexity of implementing this system as well as reviewing the lessons learned from this experience.
1999-10-19
Technical Paper
1999-01-5618
Feng Jiang
This paper examines the capability of the Reynolds-averaged thin-layer Navier-Stokes codes to simulate the results from a two-dimensional aileron effectiveness test. This unique test was carried out in the IAR high Reynolds number wind tunnel and addressed the effects of Reynolds number, Mach number and angle-of-attack on aileron effectiveness. The test results showed a highly nonlinear variation of lift for downward trailing edge deflections. It provides a valuable database for using CFD to determine the adequacy of the corrections applied to the experimental data due to the presence of the wind tunnel walls, and for assessing the current CFD capability to model the flowfield with separation. CFD predictions are obtained by using CFL3D with the Spalart-Allmaras turbulence model and TLNS2D with the modified Johnson-King turbulence model.
2011-06-13
Technical Paper
2011-38-0015
Robert Narducci, Tonja Reinert
The desire to operate rotorcraft in icing conditions has renewed the interest in developing high-fidelity analysis methods to predict ice accumulation and the ensuing rotor performance degradation. A subset of providing solutions for rotorcraft icing problems is predicting two-dimensional ice accumulation on rotor airfoils. While much has been done to predict ice for fixed-wing airfoil sections, the rotorcraft problem has two additional challenges: first, rotor airfoils tend to experience flows in higher Mach number regimes, often creating glaze ice which is harder to predict; second, rotor airfoils oscillate in pitch to produce balance across the rotor disk. A methodology and validation test cases are presented to solve the rotor airfoil problem as an important step to solving the larger rotorcraft icing problem. The process couples Navier-Stokes CFD analysis with the ice accretion analysis code, LEWICE3D.
2007-09-17
Technical Paper
2007-01-3813
Brian J. Martinek
Increased emphasis on standardizing processes and controlling variability in production operations includes validating perishable tools used in daily operations. Even though dealing with reputable manufacturers, many factors including communication, custom specifications and personnel turnover can lead to the perpetuation of mistakes if errors are not discovered and corrective action implemented. However, inspection is costly and inspection costs far outweigh many item costs unless considering product defects. A beneficial balance may be obtained by employing statistical sampling techniques similar to ISO 2859 [1] to verify the quality of incoming tools.
2007-09-17
Technical Paper
2007-01-3921
Ying Teng
The robust stability of an active flexible wing section with leading- and trailing-edge control surfaces is further investigated via the μ-method. Motivated by a more detailed servo control dynamics, the two controllers K1 and K2, which command the deflections of the trailing-edge flap and the leading-edge flap respectively, are modeled as two second-order shock absorbers in this study. The nominal and robust stability margins, modal properties, critical flutter airspeeds and frequencies are computed to predict the flutter of a nonlinear aeroelastic system and to investigate the aeroservoelastic stability in the μ-framework. The simulation results are compared with the previous study of which the controllers were modeled as the simplified (first-order) shock absorbers. The improved sensitivity to detect the control-structure coupling is observed by applying the second-order shock absorbers in the ASE model.
2009-11-10
Technical Paper
2009-01-3169
Lorrie Sivich, Ed Shroyer
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
2009-11-10
Technical Paper
2009-01-3199
Zeyad A. Al-Aqrabawi, Donald T. Fleming, Ariel S. Maranan, Herman Lam, Cliff J. Kirkham, Roberto F. Lu, Richard L. Storch
The repairing of commercial aircraft is a complex task. Service engineers at Boeing's Commercial Aviation Services group specialize in providing crucial repair information and technical support for its many customers. This paper details factors that influence Boeing's response time to service requests and how to improve it. Information pertaining to over 5000 service requests from 2008 and 2009 was collected. From analysis of this data set, important findings were discovered. One major finding is that between 6 and 8 percent of service requests are late because time/date stamps used in reports were created in a different time zone.
2009-11-10
Technical Paper
2009-01-3183
Stephen A. Ridlon
Managing the security of the infrastructure and applications for any aviation IT system necessitates some sort of control mechanism(s) for defining how the various components and processes of the system work. This is true for both the network components, applications within the infrastructure, and the various security infrastructure components such as access control mechanisms, intrusion detection systems, etc. The need for a comprehensive, defense in depth, solution to security can only be met if there is an association between the controls regulating the various security components, so that there is a consistent approach to regulating and controlling security. To meet this need we propose a unifying Global Policy Framework concept, that includes a Policy Workbench for developing and administrating the policies associated with security components and the security infrastructure.
2009-11-10
Technical Paper
2009-01-3208
Kay Y. Blohowiak, Joseph H. Osborne, Jill E. Seebergh
A family of water-based sol-gel coatings has been developed as an environmentally-friendly alternative to traditional aerospace finishing materials and processes. The sol-gel hybrid network is based on a reactive mixture of an organo-functionalized silane with a stabilized zirconium complex. Thin films of the material self-assemble on metal surfaces, resulting in a gradient coating that provides durable adhesion for paints, adhesives, and sealants. Use of the novel coating as a surface pretreatment for the exterior of commercial aircraft has enabled environmental, health, and safety benefits due to elimination of hexavalent chromium, and flight test and early fleet survey data support the laboratory observations that the sol gel coating reduces the occurrence of “rivet rash” adhesion failures. Modifications of the basic inorganic/organic hybrid network have yielded multifunctional coatings with promise for applications such as corrosion control and oxidation protection.
2009-11-10
Technical Paper
2009-01-3266
Brett Lyons, Eric Deck, Aaron Bartel
The Selective laser sintering (SLS) process offers unique capabilities for production of complex, thin-walled geometries with internal features, integral attachments and flanges. The benefits of SLS have been realized on a variety of Boeing military platforms for a number of years. However, applications on commercial aircraft have been limited by material flammability requirements. To address this gap, Boeing, in cooperation with Advanced Laser Materials, developed a flame retardant polyamide material that is now commercially available (ALM FR-106). This paper introduces the general advantages of laser sintering as applied to the manufacturing of flight hardware and a description of the development of the flame retardant material in use.
2009-07-12
Technical Paper
2009-01-2416
Dwight E. Link, David E. Williams
The International Space Station (ISS) program is nearing an assembly complete configuration with the addition of the final resource node module in early 2010. The Node 3 module will provide critical functionality in support of permanent long duration crews aboard ISS. The new module will permanently house the regenerative Environment Control and Life Support Systems (ECLSS) and will also provide important habitability functions such as waste management and exercise facilities. The ISS program has selected the Port side of the Node 1 “Unity” module as the permanent location for Node 3 which will necessitate architecture changes to provide the required interfaces. The USOS ECLSS fluid and ventilation systems, Internal Thermal Control Systems, and Avionics Systems require significant modifications in order to support Node 3 interfaces at the Node 1 Port location since it was not initially designed for that configuration.
2009-07-12
Technical Paper
2009-01-2413
Brandon Dick, Tony Cook, Dan Leonard
The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen storage in the human spaceflight environment.
2008-09-16
Technical Paper
2008-01-2313
Bobby J. Marsh
The patented (US 7,277,811 B1) Position Bar provides precise measurement, machining and drilling data for large Engineering and Tooling structure. The Position Bar also supports end item verification seamlessly in the same machining control code. Position Bar measurements are fast, accurate, and repeatable. The true centerline of the machine tool's spindle bearings are being measured to within .002 in a 20 foot cubic volume (20×20×20). True “I”, “J”, & “K” machine tool spindle positions are also precisely measured. Any Gantry or Post Mill Tool can be converted to a Coordinate Measurement Machine (CMM) with this laser tracker controlled Position Bar. Determinant Assembly (D.A.) holes, for fuselage and wing structures are drilled and then measured to within .006 in X, Y, & Z, over a 40 foot distance. Average laser tracker measurement time, per hole, is 2 seconds.
2005-07-11
Technical Paper
2005-01-2801
Ching-fen Tsai, Henry Castro, Steve Iwohara, Takeshi Kamiya, Sadamu Ito, Terumasa Kohama, Ryoichi Kanazawa
The Centrifuge Accommodation Module (CAM) is designed to be one of the modules of the International Space Station (ISS) for performing on-orbit science experiments over an extended period of time. The common cabin air assembly (CCAA) is utilized as the hardware for air temperature and humidity control (THC) for the CAM module cabin. The CCAA unit contains a variable speed fan, heat exchanger, temperature control valve, water separator, temperature sensor, and electrical interface box. A temperature and humidity simulation model was developed to perform the THC analysis for the CCAA unit inside the CAM. This model applies both fixed control volume and a quasi-steady-state approach for computing critical information for evaluating/assessing CCAA system performance and capabilities.
2005-07-11
Technical Paper
2005-01-2897
Ryan N. Schaezler, Daniel J. Leonard, Saniel Suri
International Space Station (ISS) Crewmembers perform one of three denitrogenation protocols prior to performing Extravehicular Activities (EVAs) using the International Space Station (ISS) Airlock. The three denitrogenation protocols are: a) Exercise, b) Campout, and c) In-suit. EVA gas usage is categorized into Denitrogenation, Extravehicular Mobility Unit (EMU) oxygen use during EVAs, and air loss gas usage. The amount of gas usage depends on the denitrogenation protocol that is used. Each protocol's gas usage will differ as a result of different requirements of denitrogenation and EMU support. Flight data is correlated with theoretical values when it is available. The correlation to flight data provides a validation of the analysis data. Theoretical and actual gas usages from the ISS were calculated for EVAs out of the Airlock during Stage 7A to Stage 11A. Components of denitrogenation and EMU support gas usage are included.
2005-07-11
Technical Paper
2005-01-2794
Chang H. Son, Evgueni M. Smirnov, Nikolay G. Ivanov, Denis S. Telnov
This study covers CFD simulation of the air ventilation within the Assembly Complete stage of ISS on-orbit configuration of twelve modules. An assessment of ISS cabin aisle way airflow characteristics was performed on the basis of the integrated model computations. Both the quantitative evaluation of velocity distribution and qualitative analysis of three-dimensional airflow are presented.
2004-09-21
Technical Paper
2004-01-2822
Roberto F. Lu, Lei Li, Kyoung Cheol Kim
This paper addresses a simulation modeling case study of a batching process. The batching process exists in a multi-server, multi-queue aircraft component manufacturing system where all parts and batches are serial numbered for traceability. Every lot of parts requires a unique set of serial numbers and the sequence of batches is required to follow the airplane master production schedule. The study goal was to identify and provide solutions to shorten arrival time differences among parts going to the same batch in a system of more than 100 shared processes. Queue lengths, resource utilization, bottlenecks, and various scenario comparisons were yielded from simulation modeling exercises.
2007-05-15
Technical Paper
2007-01-2316
Evan B. Davis
Statistical Energy Analysis (SEA) is a very powerful tool in its ability to guide noise control package design in automobile, airplane and architectural systems. However transmission loss modeling in an SEA frame work has more to do with modeling of sound propagation through foam and fiber noise control materials than classical SEA power flow between groups of resonant modes. The transmission loss problem is reviewed in an SEA frame work with a focus on key paths and input parameter variations on predicted noise control package performance.
2006-09-12
Technical Paper
2006-01-3176
John P. Barry, Scott C. Tomchick, Peter B. Zieve, Russell T. Meador
The Boeing Company (Renton Division) had a requirement for a 30,000 RPM spindle to provide improved surface finish when milling 2034 ice box rivets in hydraulic wing riveters. Electroimpact supplied an electrical spindle which fit into the same cylinder block as the hydraulic spindle. This was reported in SAE Paper #2000-01-3017. Boeing Renton has also now put Electroimpact 20,000 RPM electric drilling spindles into five wing riveting machines so now both spindles in the machine are Electroimpact electric spindles. The electric drill spindle features an HSK 40C holder. Both spindles are powered by the same spindle drive which is alternately connected to the drill and then the shave spindle.
2006-07-17
Technical Paper
2006-01-2062
C. D. Thompson
The ISS U. S. ECLSS contains replaceable component designs to facilitate maintenance. A replaceable component is referred to as an Orbital Replacement Unit (ORU). Total U. S. ECLSS maintenance events that have occurred over the five years (2001-2005) of operations are summarized. A more detailed description is provided for the ECLSS Remove and Replace (R&R) maintenance activities that have occurred during the last two years and the associated logistics that supported these activities. Maintenance activities have replaced failed or degraded ORU's by Corrective Maintenance (CM) and replaced spent expendable ORU's by Preventative Maintenance (PM). Corrective maintenance is performed only when necessary and often on relatively short notice. Preventative maintenance is planned in advance and is normally performed at a specified ORU service time. The paper also describes activities and successful efforts to increase the expendable ORU service life.
2006-07-17
Technical Paper
2006-01-2058
Richard Reysa, Steve Van Keuren, Cindy Philistine, Dwight “Chip” Link
Currently the International Space Station (ISS) has limited Regenerative Environmental Control and Life Support System (ECLSS) capability. This capability only consists of condensate water recovery that is resident in the Russian Segment (RS). The ISS program planned to have the United States (U.S.) Regenerative ECLSS located in the Node 3 element, however recently the program directed earlier implementation of the U.S. Regenerative ECLSS into the U.S. laboratory element. This configuration change is in the process of being implemented to allow for earlier integration of the three racks containing urine processing, water processing, and oxygen generation regenerative functions into the U.S. Laboratory. The Regenerative ECLSS functions were originally planned for operation aboard ISS after the launch and attachment of the Node 3 element in early 2010.
2006-07-17
Technical Paper
2006-01-2050
Brian Dunaway
Since flight requirements often necessitate last-minute re-analysis, it became crucial to develop flexible and comprehensive transport phenomena analysis software that would quickly ensure all vehicle and payload requirements would be satisfied. The software would replace various mainframe-based software, such as the Thermal Radiation Analyzer System (TRASYS) and the Systems Improved Numerical Differencing Analyzer (SINDA). The software would need to have the flexibility to employ models that could be developed and modified as vehicle systems change. By use of event files which contain simple, intuitive commands, the characteristics of individual missions could be built as inputs to the model. By moving the Environmental Control & Life Support (ECLS) system model to the PC environment, each analyst would have execution, storage, and processing management control. And of course, software portability would be greatly increased.
2006-07-17
Technical Paper
2006-01-2090
Phillip Brendan Watters, Ryan Nathaniel Schaezler
The analysis presented in this paper focuses on the metabolic consumption of oxygen by the crew onboard the International Space Station (ISS) during Expedition 12. The Russian Elektron, which electrolyzes water to produce oxygen, operational and non-operational periods are used to assist in the calculation of metabolic oxygen consumption. Non-operational periods will be used to establish baseline crew consumption rates. The importance of this analysis is to provide more accurate trend of oxygen metabolic consumption rates for Expedition 12.
2006-07-17
Technical Paper
2006-01-2091
Daniel J. Leonard, Richard G. Ehmer
The Nitrogen System aboard the International Space Station (Station) continues to maintain Station total pressure and support several ongoing scientific and medical tasks. This paper addresses elevated leakage in the Nitrogen System, behavior during events such as nitrogen usage in other parts of the Station, and describes behavioral changes of the nitrogen Regulator/Relief Valve (regulator) since the activation of the Nitrogen System in 2001.
2006-07-17
Technical Paper
2006-01-2092
George Steiner, Souzan Maleki Thoresen, Richard Reysa, John Granahan
This paper summarizes the first 5 plus years of on-orbit operation for the Major Constituent Analyzer (MCA). The MCA is an essential part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer instrument in the US Destiny Laboratory Module of the International Space Station. The MCA provides critical monitoring of six major atmospheric constituents (nitrogen (N2), oxygen (O2), hydrogen (H2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O)) sampled continuously and automatically in all United States On-Orbit Segment (USOS) modules via the Sample Distribution System (SDS). Sample lines have been routed throughout the U.S. modules with valves to facilitate software-automated sequential sampling of the atmosphere in the various modules.
2007-07-09
Technical Paper
2007-01-3116
M. Y. Kim, A. L. Ponomarev, H. Nounu, H. Hussein, F. A. Cucinotta, William Atwell
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed evaluations of radiation shielding properties are required. A model using a modern CAD tool ProE™, which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4π particle flux on a surface.
Viewing 1 to 30 of 167

Filter

  • Range:
    to:
  • Year: