Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 59
2005-07-11
Technical Paper
2005-01-2897
Ryan N. Schaezler, Daniel J. Leonard, Saniel Suri
International Space Station (ISS) Crewmembers perform one of three denitrogenation protocols prior to performing Extravehicular Activities (EVAs) using the International Space Station (ISS) Airlock. The three denitrogenation protocols are: a) Exercise, b) Campout, and c) In-suit. EVA gas usage is categorized into Denitrogenation, Extravehicular Mobility Unit (EMU) oxygen use during EVAs, and air loss gas usage. The amount of gas usage depends on the denitrogenation protocol that is used. Each protocol's gas usage will differ as a result of different requirements of denitrogenation and EMU support. Flight data is correlated with theoretical values when it is available. The correlation to flight data provides a validation of the analysis data. Theoretical and actual gas usages from the ISS were calculated for EVAs out of the Airlock during Stage 7A to Stage 11A. Components of denitrogenation and EMU support gas usage are included.
2009-07-12
Journal Article
2009-01-2339
Courtney Matzkind, William A. Seidler, William J. Atkinson
Electrical disturbances caused by charging of cables in spacecraft can impair electrical systems for long periods of time. The charging originates primarily from electrons trapped in the radiation belts of the earth. The model Space Electrons Electromagnetic Effects (SEEE) is applied in computing the transient charge and electric fields in cables on spacecraft at low to middle earth altitudes. The analysis indicated that fields exceeding dielectric breakdown strengths of common dielectric materials are possible in intense magnetic storms for systems with inadequate shielding. SEEE also computes the minimal shielding needed to keep the electric fields below that for dielectric breakdown.
2009-11-10
Technical Paper
2009-01-3169
Lorrie Sivich, Ed Shroyer
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
2009-07-12
Journal Article
2009-01-2550
Chang H. Son, Brian R. Dunaway, Evgueni M. Smirnov, Nikolay G. Ivanov, Denis S. Telnov
The paper presents the results of a CFD study for predictions of ventilation characteristics and convective heat transfer within the Shuttle Orbiter middeck cabin in the presence of seven suited crewmember simulation and Individual Cooling Units (ICU). For two ICU arrangements considered, the thermal environmental conditions directly affecting the ICU performance have been defined for landing operation. These data would allow for validation of the ICU arrangement optimization.
2009-07-12
Journal Article
2009-01-2549
Chang H. Son, Evgueni M. Smirnov, Nikolay G. Ivanov, Denis S. Telnov
The objective of this study is to evaluate ventilation efficiency regarding to the International Space Station (ISS) cabin ventilation during the ISS assembly mission 1J. The focus is on carbon dioxide spatial/temporal variations within the Node 2 and attached modules. An integrated model for CO2 transport analysis that combines 3D CFD modeling with the lumped parameter approach has been implemented. CO2 scrubbing from the air by means of two ISS removal systems is taken into account. It has been established that the ventilation scheme with an ISS Node 2 bypass duct reduces short-circuiting effects and provides less CO2 gradients when the Space Shuttle Orbiter is docked to the ISS. This configuration results in reduced CO2 level within the ISS cabin.
1997-10-13
Technical Paper
975532
James M. Daum, James F. Grenell, Paul R. Wilkinson, Leon A. Zmroczek, Eric H. Bolz, Brian M. Sawyer, Arthur F. Kramer, Timothy A. Weber, Christopher D. Wickens
A study was conducted to investigate the impacts of obstacles on pilot performance, workload, and perceptions of safety in a visual flight rule (VFR) obstacle-rich environment (ORE). The study was conducted using a piloted simulation of a single-rotor, multi-engine helicopter operating in a highly detailed urban visual scene database. The database contained multiple obstacle types, with variable obstacle heights and densities. Nine pilots completed the approaches and departures into and out of a heliport located in the center of the generic urban environment. Two flight routes offered unique presentations of terrain and obstacle types. Obstacle height/density and time of day/lighting parameters were systematically manipulated. A multi-dimensional data collection methodology employing the simultaneous collection of direct aircraft state, pilot performance data, pilot physiological data and pilot subjective responses was employed.
1998-09-28
Technical Paper
985552
Robert W. Schwab, Aslaug Haraldsdottir, Anthony W. Warren
This paper identifies an approach to the definition of a National Airspace System (NAS) architecture which will support the future development of the U.S. air transportation system, consistent with long-range needs of the various users of the NAS. The approach outlined identifies the development of an FAA preliminary design methodology, with supporting tools and processes to provide the basis for NAS modernization. This approach begins with the quantification of the primary long-range objectives of the NAS, which the system architecture must support over its design life. These objectives are the basis of the mission analysis and requirements development, which, in turn, are used for technology tradeoff studies and the baselining of an architecture for evaluation.
1998-09-28
Technical Paper
985565
Thomas P. Dickens, Daniel A. Owen
Advanced Data Format (ADF) is a portable hierarchical database software library developed by The Boeing Company under contract with NASA [1] and with assistance from industry partners. ADF was designed and built to directly support the CFD General Notation System (CGNS1) project. The CGNS project defines conventions and supplies software to facilitate the exchange of computational fluid dynamics (CFD) data between sites and between applications, and it allows stable archiving of CFD data. CGNS is implemented on the ADF foundation and is focused on the needs of the CFD community. This paper details the design, implementation, use, and future direction of ADF.
1998-07-13
Technical Paper
981735
J. Navickas, W. C. Rivard, A. R. Porter, K. A. Rathgeber, J. Corkran
Excessive impact pressures can develop when an evacuated system is filled with liquid. Such a process is usually highly chaotic, especially when the system geometry is complex. Available computational methods by themselves cannot provide the necessary answers. The International Space Station (ISS) heat exchanger has a complex flow system, and a synthesis of computational and experimental methods was necessary to design the system. The FLOW-NET two-phase flow program was used to determine the range of loss coefficients and the liquid-vapor interface mass and energy transfer that would fit the measured impact pressures. These loss coefficients could then be used to compute the impact pressures for a design configuration similar to the one tested at a range of operating conditions.
1998-07-13
Technical Paper
981792
Niranjan S. Rao, Guy K. Griffith, Donathan E. Hutchings, William B. Howard
As pieces of the International Space Station (ISS) enter their test phase, access to information and data from the test laboratories must be made immediately available to analysts, managers, and customers. The Virtual Laboratory (VLAB) concept provides remote access to laboratory test data and other information, indirectly as archived data or directly as real-time data off the test bed. We applied VLAB to a life support system hardware test (the Trace Contaminant Control System, TCCS) in the Life Support Technology Center (LSTC). In this paper we describe the VLAB concept in the context of the TCCS hardware test.
1998-07-13
Technical Paper
981588
Ching-Fen Tsai, Glenn A. Sitler
A multi-element fixed control volume integrated air interchange system performance computer model has been developed and upgraded for the evaluation/assessment of atmospheric characteristics inside the crew compartments of the mated Orbiter and International Space Station (ISS). In order to ensure a safe, comfortable, and habitable environment for all the astronauts during the Orbiter/ISS docked period, this model was utilized to conduct the analysis for supporting the early ISS assembly missions. Two ISS assembly missions #2A and #4A were selected and analyzed.
1998-06-02
Technical Paper
981835
Kelly K. Burris, William L. Rodewald
Dimensional Management (DM) is a methodology to predict and control the impact of variation on assembly from, fit, and function. Application of Dimensional Management tools and other modeling and simulation techniques are combined in a process called 3D Re-Engineering for application to existing production designs. Analytical techniques for predicting the impact of variation on assembly fit, and corresponding methods for controlling variation are presented, as used in a production environment for root cause corrective action on existing assembly fit problems. Assembly variation analysis is typically performed early in the product development phases, by coordinating datums, assembly sequences, assembly methods, and detail part tolerances across the product development team.
1998-06-02
Technical Paper
981861
Joe Anelle
The Boeing Company is developing and implementing the tools for the 21st Century for product development with their Design Manufacturing and Producibility Simulation (DMAPS) program. DMAPS combines the best of people, hardware and software tools commercially available to develop product and process simulation applications. The DMAPS toolset enhances the process of preparing concept layouts, assembly layouts and build-to-packages. Comprised of an Integrated Product and Process Team (IPPT), DMAPS produces products faster and with higher quality. The result is a process that eliminates costly changes and rework, and provides all IPPT's the tools and training necessary to perform their tasks right the first time. Boeing applies DMAPS tools to a variety of existing and new programs to build more affordable products. Savings goals set forth by the program are shown in Figure 1.
2006-07-17
Technical Paper
2006-01-2050
Brian Dunaway
Since flight requirements often necessitate last-minute re-analysis, it became crucial to develop flexible and comprehensive transport phenomena analysis software that would quickly ensure all vehicle and payload requirements would be satisfied. The software would replace various mainframe-based software, such as the Thermal Radiation Analyzer System (TRASYS) and the Systems Improved Numerical Differencing Analyzer (SINDA). The software would need to have the flexibility to employ models that could be developed and modified as vehicle systems change. By use of event files which contain simple, intuitive commands, the characteristics of individual missions could be built as inputs to the model. By moving the Environmental Control & Life Support (ECLS) system model to the PC environment, each analyst would have execution, storage, and processing management control. And of course, software portability would be greatly increased.
2006-07-17
Technical Paper
2006-01-2090
Phillip Brendan Watters, Ryan Nathaniel Schaezler
The analysis presented in this paper focuses on the metabolic consumption of oxygen by the crew onboard the International Space Station (ISS) during Expedition 12. The Russian Elektron, which electrolyzes water to produce oxygen, operational and non-operational periods are used to assist in the calculation of metabolic oxygen consumption. Non-operational periods will be used to establish baseline crew consumption rates. The importance of this analysis is to provide more accurate trend of oxygen metabolic consumption rates for Expedition 12.
2005-10-03
Technical Paper
2005-01-3307
Pradip K. Saha
Electromagnetic forming (EMF) technology has been used lately for the joining and assembly of axisymmetric parts in the aerospace and automotive industries. A few case studies of compressive-type joining processes applied on both aluminum and titanium or stainless tubes for aerospace applications are presented. In the first case study, tests were conducted using 2024-T3 drawn tubes joined with a steel end fitting to form a torque tube using different forming variables including: the fitting geometry, material formability and forming power (KJ). The power setting and the fitting geometry were optimized to improve the fatigue life, torque off, and the axial load capability of the torque tube joints to drive the leading and trailing edge high-lift devices.
2005-10-03
Technical Paper
2005-01-3317
Keith A. Young, Sebastian Nervi, Barna Szabo
Distortion and buckling of aluminum aerospace components can be caused by machining-induced residual stress or by residual stress induced earlier in material processing. This stress is characterized through layer removal experiments and measurements of surface location. This stress is correlated to two machining process parameters, which can be changed, in order to control distortion and buckling of machined metallic components. Experiments are presented which compare distortion of thin machined parts to distortion of chemically milled parts in order to uncouple material bulk stress from machining-induced stress.
2005-07-11
Technical Paper
2005-01-3119
Savino De Palo, Bruce D. Wright, Robert W. Clark, Brian G. Rhone, Zoltan Szigetvari, Stephan Hinderer, Jan Persson
ESA and NASA agencies agreed to run an interface compatibility test at the EADS facility between the Columbus flight module and a duplicate ground unit of a currently on-orbit US International Standard Payload Rack, the Human Research Facility (HRF) Flight Prototype Rack (FPR). The purpose of the test was to demonstrate the capability to run US payloads inside the European ISS module Columbus. One of the critical aspects to be verified to ensure suitable operations of the two systems was the combined performance of the hydraulic controls resident in the HRF and Columbus coolant loops. A hydraulic model of the HRF FPR was developed and combined with the Columbus Active Thermal Control System (ATCS) model. Several coupled thermal-hydraulic test cases were then performed, preceded by mathematical analysis, required to predict safe test conditions and to optimize the Columbus valve configurations.
2005-07-11
Technical Paper
2005-01-2795
Chang H. Son, Edward H. Turner, Evgueni M. Smirnov, Nikolay G. Ivanov, Denis S. Telnov
This paper reports results of Computational Fluid Dynamics (CFD) analysis of carbon dioxide (CO2) gradient variations in twelve ISS modules. Computations were performed using two 3D integrated models: one from the U.S. Laboratory to the forward end, and the other from the U.S. Laboratory to the aft end of the ISS. Operation of the CO2 removal systems and CO2 generation among six International Space Station (ISS) crewmembers' metabolic processes were included in the model. For several crew location scenarios, a detailed analysis of the CO2 gradients and time evolution in zones potentially occupied by astronauts is presented. In general, the paper gives an extended example of the application of CFD analysis to complex problems related to the quality of the cabin air.
2005-07-11
Technical Paper
2005-01-2794
Chang H. Son, Evgueni M. Smirnov, Nikolay G. Ivanov, Denis S. Telnov
This study covers CFD simulation of the air ventilation within the Assembly Complete stage of ISS on-orbit configuration of twelve modules. An assessment of ISS cabin aisle way airflow characteristics was performed on the basis of the integrated model computations. Both the quantitative evaluation of velocity distribution and qualitative analysis of three-dimensional airflow are presented.
2005-07-11
Technical Paper
2005-01-2799
Chang H. Son, Brian R. Dunaway, Evgueni M. Smirnov, Nikolay G. Ivanov, Denis S. Telnov
This paper presents results of the CFD study aimed at evaluation of the CO2 concentration within the Shuttle Orbiter Middeck during the Launch on Need (LON) Crew Rescue flight. An assessment of the Middeck ventilation characteristics has been performed for two possible ventilation arrangements. A recommendation to use the ventilation system configuration with the open aft floor diffuser has been made on the basis of a three-dimensional airflow and CO2 gradient analysis.
2005-07-11
Technical Paper
2005-01-2801
Ching-fen Tsai, Henry Castro, Steve Iwohara, Takeshi Kamiya, Sadamu Ito, Terumasa Kohama, Ryoichi Kanazawa
The Centrifuge Accommodation Module (CAM) is designed to be one of the modules of the International Space Station (ISS) for performing on-orbit science experiments over an extended period of time. The common cabin air assembly (CCAA) is utilized as the hardware for air temperature and humidity control (THC) for the CAM module cabin. The CCAA unit contains a variable speed fan, heat exchanger, temperature control valve, water separator, temperature sensor, and electrical interface box. A temperature and humidity simulation model was developed to perform the THC analysis for the CCAA unit inside the CAM. This model applies both fixed control volume and a quasi-steady-state approach for computing critical information for evaluating/assessing CCAA system performance and capabilities.
2005-07-11
Technical Paper
2005-01-2797
Darrah Speiser, David Pines, Chang H. Son
Proper design of the air ventilation system is critical to maintaining a healthy environment for the ISS crew. In this study, a computational fluid dynamic model was used to model the air circulation in Node 1 to identify the locations where there are low air velocities under nominal operating conditions and several reduced ventilation flow conditions. The reduced ventilation flow conditions analyzed were loss of cabin air fan, loss of inter-module ventilation from Node 1 to the US Lab, and loss of inter-module ventilation from the airlock to Node 1. For nominal operation of the ventilation system, about 5% of the node had air velocity of between 1 and 5 ft/min and 14% of the node had air velocity of between 5 and 10 ft/min. Loss of the cabin air fan and loss of Lab inter-module ventilation did not have a significant impact on the percentage of the node that would have low air circulation.
2005-07-11
Technical Paper
2005-01-2798
Chang H. Son, Evgueni M. Smirnov, Nikolay G. Ivanov, Denis S. Telnov
This CFD study is aimed at evaluation of the ventilation characteristics within the ISS Node 1 with the Advanced Resistive Exercise Device (ARED) protrusions into ECLS keep-out zones. An assessment of Node 1 airflow characteristics in the presence of the ARED and a human body simulation model has been performed for the current on-orbit configuration of the Node 1 ventilation system. Both the quantitative velocity distribution analysis and qualitative three-dimensional airflow evaluation have shown that the installation of the ARED in the Node 1 radial bay produces a minimal impact on the cabin ventilation characteristics and the crew.
2005-07-11
Technical Paper
2005-01-2768
Peter L. McCloud, Brian R. Dunaway, John C. Graf, Curtis A. Stephenson
Recent efforts have been pursued to establish the usefulness of Space Shuttle Orbiter lithium hydroxide (LiOH) canisters beyond their certified two-year shelf life, at which time they are currently considered “expired.” A stockpile of Orbiter LiOH canisters are stowed on the International Space Station (ISS) as a backup system for maintaining ISS carbon dioxide Canisters with older (CO2) control. Canister with older pack dates must routinely be replaced with newly packed canisters off-loaded from the Orbiter Middeck. Since conservation of upmass is critical for every mission, the minimization of canister swap-out rate is paramount. LiOH samples from canisters with expired dates that had been returned from the ISS were tested for CO2 removal performance at the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD). Through this test series and subsequent analysis, performance degradation was established.
2006-11-07
Technical Paper
2006-01-3038
Rolando Burgos, Sebastian Rosado, Fred Wang, Dushan Boroyevich, Zachary Lewis, Kamiar Karimi
The modeling and simulation of electrical power systems has become a primary design tool for the synthesis of aerospace power systems with hybrid AC/DC distribution. Although in the past the use of extensive time domain simulations using detailed models has been favored, the need to study stability and associated phenomena in this type of power systems-having a high penetration of power electronics loads-has transformed the modeling requirements for aerospace applications. This paper explores different modeling aspects required to study both small-signal and large-signal stability in these systems, providing insight into the development of key system component models-variable frequency generators, line-commutated converters, PWM motor drives and constant power loads, as well as the theoretical foundations based on the Generalized Nyquist Criterion and the Lyapunov Direct and Indirect Methods to fully assess the stability conditions of these power systems.
2006-09-12
Technical Paper
2006-01-3176
John P. Barry, Scott C. Tomchick, Peter B. Zieve, Russell T. Meador
The Boeing Company (Renton Division) had a requirement for a 30,000 RPM spindle to provide improved surface finish when milling 2034 ice box rivets in hydraulic wing riveters. Electroimpact supplied an electrical spindle which fit into the same cylinder block as the hydraulic spindle. This was reported in SAE Paper #2000-01-3017. Boeing Renton has also now put Electroimpact 20,000 RPM electric drilling spindles into five wing riveting machines so now both spindles in the machine are Electroimpact electric spindles. The electric drill spindle features an HSK 40C holder. Both spindles are powered by the same spindle drive which is alternately connected to the drill and then the shave spindle.
2004-06-15
Technical Paper
2004-01-2190
James Troy, Jeanne Guerin
The Human Swept Volume (HSV) software described here is an interactive tool that allows users to position and animate articulated human models and then generate tessellated swept volume solids. Inverse kinematics and keyframe interpolation are used to define motion sequences, and a voxel-based method is used to create swept volume solid models. The software has been designed to accept various human anthropometry models, which can be imported from other CAD tools. For our initial implementation, we defined several human models based on dimensions from CAESAR/SAE anthropometric data. A case study is described in which the swept volume software was used as a part of a human space occupancy analysis. Results show the advantages of using complete swept volumes for objective measurement comparisons.
2004-07-19
Technical Paper
2004-01-2498
Edward H. Turner, Chang H. Son, Evgueni M. Smirnov, Nikolay G. Ivanov, Denis S. Telnov
Crew health is dependent on the concentration of carbon dioxide in the atmosphere breathed. Often, models used for concentration have used the assumption that each module of the space station is well mixed, i.e. that the CO2 concentration is constant throughout the module. In this paper, Computational Fluid Dynamics (CFD) modeling is used to assess and validate the accuracy of that assumption. The concentration of carbon dioxide as calculated by CFD was compared to the concentration as calculated by a lumped parameter model. The assumption that the module is well mixed allows the use of relatively simple models, which can be developed and run quickly in order to support decisions for on-orbit analysis. CFD models generate more detailed information, such as CO2 gradients within the modules and airflow and mixing characteristics. However, CFD models, particularly transient models, take longer to develop and use.
2004-07-19
Technical Paper
2004-01-2500
Evgueni M. Smirnov, Nikolay G. Ivanov, Denis S. Telnov, Chang H. Son, Valery K. Aksamentov
Ventilation characteristics of the Columbus module are numerically predicted on the basis of the Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) approaches. Effects of air supply diffuser modeling on computed flow are analyzed. An “effective diffuser” model that considerably reduces the number of computational cells for Columbus CFD ventilation analysis is proposed and tested. The computational models are verified by a comparison with the experimental data available. Special attention is paid to distinctions in fields of the time-averaged absolute velocity magnitude and the whole mean velocity that are due to the contribution of large-scale fluctuations. A technique to evaluate spatial distribution of the time-averaged absolute velocity magnitude using data of RANS steady-state predictions is suggested.
Viewing 1 to 30 of 59

Filter

  • Range:
    to:
  • Year: