Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Investigation on Effect of Offset Orifice Nozzle on Diesel Combustion Characteristics

2020-09-15
2020-01-2038
Compression ignition engines provide superior thermal efficiency over other internal combustion engines. Unfortunately the combustion process is diffusive combustion, meaning a lot of fuel is impinged the on the piston and cylinder wall. This creates cooling loss coupled with smoke, CO and THC. Minimization of the nozzle orifice diameter is a simple method widely used to shorten spray penetration. However, decreasing the nozzle orifice diameter also decreases fuel flow rate resulting in a prolonged injection and combustion process and reducing thermal efficiency. An offset orifice nozzle causes less fuel impingement by shorter fuel spray penetration without significant reduction of fuel flow rate. The offset orifice nozzle was made by shifting its alignment from the center of the sac to the edge of the sac following the swirl direction. A counterbore design was applied to maintain constant orifice length.
Technical Paper

Stereoscopic Micro-PIV Measurement of Near-Wall Velocity Distribution in Strong Tumble Flow under Motored SI Engine Condition

2020-09-15
2020-01-2019
In a state-of-the-art lean-burn spark ignition engine, a strong in-cylinder flow field with enhanced turbulence intensity is formed, and understanding the wall heat transfer mechanism of such a complex flow is required. The flow velocity and temperature profiles inside the wall boundary layer are strongly related to the heat transfer mechanism. In this study, two-dimensional three-component (2D3C) velocity distribution near the piston top surface was measured during the compression stroke in a strong tumble flow using a rapid compression and expansion machine (RCEM) and a stereoscopic micro-PIV system. The bore, stroke, compression ratio, and compression time were 75 mm, 128 mm, 15, and 30 ms (equivalent to 1000 rpm), respectively.
Technical Paper

Investigation of Effects of Ignition Improvers on Ignition Delay Time of Ethanol Combustion with Rapid Compression and Expansion Machine

2012-04-16
2012-01-0854
This work investigates the effects of ignition improvers on the ignition and combustion characteristics of hydrous ethanol with 5% by weight water and 1% by weight Lauric acid (Eh95) under simulated diesel engine conditions using the rapid compression and expansion machine (RCEM). Results indicate that hydrous ethanol with commercial additive (ED95) and hydrous ethanol with 5% by weight glycerol ethoxylate in hydrous ethanol exhibit a near identical rate-of-pressure-rise and heat release rate. Ignition delay of hydrous ethanol with 5% by weight glycerol ethoxylate is shorter, but hydrous ethanol with 1% by weight glycerol ethoxylate has longer ignition delay time and different combustion characteristics compared with hydrous ethanol with commercial additive (ED95). Hydrous ethanol with 1% by weight glycerol ethoxylate and hydrous ethanol with 5% by weight glycerol ethoxylate are considered suitable fuels for high compression-ratio diesel engines.
Technical Paper

Comparison Study on Fuel Properties of Biodiesel from Jatropha, Palm and Petroleum Based Diesel Fuel

2014-03-24
2014-01-2017
The increase of air pollution and global warming is a threat for human life. Besides, the price of petroleum is increasing rapidly and the resources are diminishing. This obliged scientists and engineers to look for alternative sources of energy, which are cleaner and more sustainable. Biodiesel, defined as mono-alkyls of esters from vegetable oils and animals fat, is a cleaner renewable fuel and has been considered as the best alternative for petroleum based diesel fuel hence it can be used in any compression ignition engines without any significant modification. The main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions due to their higher content of oxygen. The produce less soot and hence the feed stuck is plant it will regenerate the CO2 by the photosynthesis which ensures the renewability and reduces global warming.
Technical Paper

Development of a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1995-10-01
952514
A rapid compression-expansion machine was developed, which can simulate intake, compression, expansion and exhaust strokes in a single Diesel cycle by an electrically controlled and hydraulically actuated driving system. The whole system which is composed of a hydraulic actuator, fuel injector and a valve driving device, is sequentially controlled by a micro-computer. The machine features; 1) accurate control of piston position at TDC, 2) no effect of lubricant on HC emission due to the use of dry piston rings; 3) independent control of local wall temperature; and 4) high power output to drive heavy piston at high frequency. The single cycle operation permits Diesel combustion experiments under a wide range of operating conditions and easy access of optical diagnostics with minimized amount of test fuel. The performance test showed that the machine can drive a DI Diesel type piston with a 100 mm bore at a maximum frequency of 16.7 Hz at a maximum compression pressure of 15 MPa.
Technical Paper

Heat Engine with Reciprocating Super-Adiabatic Combustion in Porous Media

1997-02-24
970201
A one-dimensional numerical calculation has been performed on a new reciprocating heat engine proposed on the basis of super-adiabatic combustion in porous media. The system consists of two pistons and a thin porous medium in a cylinder; one being a displacer piston and the other a power piston. These create reciprocating motions with a phase relation angle. By means of the reciprocating flow system, the residual combustion gas enthalpy is effectively regenerated to induce enthalpy increase in the mixture through the porous medium. Due to heat recirculation, the thermal efficiency reaches to 58% under the condition of the compression ratio of 2.3.
Technical Paper

Development of a Rapid Compression-Expansion Machine to Simulate Combustion in Diesel Engines

1988-10-01
881640
A rapid compression-expansion machine which can simulate the combustion processes in diesel engines is developed. The configuration of the combustion chamber is a 100 mm bore and a 90 mm stroke, and the compression ratio is 15. The piston is driven by an electro-hydraulic system with a thrust of 90 kN and the maximum frequency of 20 Hz. The whole system composed of a hydraulic actuator, a fuel injection system, and a valve driving unit is sequentially controlled by a computer. The reproducibility of the stop position of the piston at the end of compression is achieved with an accuracy of ±0.1 mm by employing a hydraulic-mechanical brake mechanism. The experiment shows that the combustion in the expansion stroke is achieved, and that the combustion characteristics such as the rate of heat release and indicated output as well as the exhaust emission can be measured.
Technical Paper

Multi-Step Water Splitting with Mn-Ferrite/Sodium Carbonate System

1999-08-02
1999-01-2670
Multi-step water splitting with Mn-ferrite(MnFe2O4)/sodium carbonate(Na2CO3) system accompanying endothermic reaction was investigated for converting solar energy into chemical energy. This water splitting is caused by the oxidation-reduction of manganese ion in the Mn-ferrite. Multi-water splitting with MnFe2O4/Na2CO3 system was consisted of three steps. The first step was hydrogen generation at 1073K. The second step was oxygen release at 1273K. The third step was Na2CO3 reproduction at 873K. The mechanism of multi-water splitting has been considered by XRD, chemical analysis of colorimetry and back titration. The temperature range 873 to 1273K is quite lower than those studied on the solar furnace reaction (O2 releasing step) in two-step water splitting (1500-2300K). This lower temperature range would permit further progress in converting the direct solar energy into chemical energy.
Technical Paper

Investigation on Premixed Charge Compression Ignition Combustion Control Using Multi Pulse Ultrahigh Pressure Injection

2019-04-02
2019-01-1155
Compression ignition (CI) engines provide higher thermal efficiency compared to other internal combustion engines although large amounts of NOx and soot are produced during combustion. NOx and soot emissions can be reduced by using Premixed Charge Compression Ignition (PCCI) combustion. However, the problems of PCCI combustion include limited operating range, unstable start of combustion and an increase in combustion noise. The multi-pulse ultrahigh pressure injection allows fuel to be injected near TDC, improving mixture formation and enhancing the possibility to extend the operating range of PCCI combustion. The objective of this paper is to control and extend the operating range of PCCI combustion using multi-pulse ultrahigh pressure injection. This has not been studied before. Combustion characteristics were investigated using apparent rate of heat release analysis, heat balance analysis, exhaust emission measurement and soot concentration measurement.
Technical Paper

Impact of Engine Oil Additives on Nanostructure and Oxidation Kinetics of Diesel and Synthetic Biodiesel Particulate Matters using Electron Microscopy

2019-12-19
2019-01-2351
Physicochemical characteristics of particulate matters which are influenced by engine oil additives from engine combustion of diesel and synthetic biodiesel: hydrotreated vegetable oil (HVO) were successfully investigated using electron microscopy, electron dispersive x-ray spectroscopy and thermogravimetric analysis. The agglomerate structure of diesel PM, HVO PM and diesel blending lubricant PM are similar in micro-scales. However, nanostructure of soot is a spherical shape composed of curve line crystallites while the metal oxide ash nanostructure is composed of parallel straight line hatch patterns. The oxidation kinetics of fuel blending lubricant PMs are higher than neat fuel PMs due to catalytic effect of incombustible metal additives from engine lubricating oil.
Journal Article

Combustion Characteristic of Offset Orifice Nozzle under Multi Pulse Ultrahigh Pressure Injection and PCCI Combustion Conditions

2020-01-24
2019-32-0522
CI engines provide higher thermal efficiency compared to other internal combustion engines. On the other hand large amounts of smoke and NOx are produced during combustion. Smoke and NOx can be reduced by applying Premixed Charge Compression Ignition (PCCI) combustion. Unfortunately, the problems of PCCI combustion include unstable start of combustion and limited operating range. The multi-pulse ultrahigh pressure injection allows fuel to control PCCI combustion. The objective of offset orifice nozzle is to improve mixture formation and shorten spray penetration in order to increase thermal efficiency and control PCCI combustion. The offset orifice nozzle was designed by shift orifice aliment from into the sac center to edge of sac follow swirl direction. Counter bore design was applied to offset orifice nozzle in order to keep the constant orifice length as standard nozzle.
Technical Paper

Physical Characterization of Biodiesel Particle Emission by Electron Microscopy

2013-10-15
2013-32-9150
Nanostructures of diesel and biodiesel engine particulate matters (PMs) were investigated by using a Transmission Electron Microscopy (TEM). The average single particle sizes of biodiesel and diesel PMs are approximately 30-40 nm and 50-60 nm, respectively. Image processing process was used to estimate each carbon platelet length by using TEM image. The average carbon platelet length of biodiesel and diesel PMs are in the range of 0.1-7.0 nm. Moreover, carbon atoms per cubic volume of PMs are approximately 500-900. The result shows that engine load and fuel property are strongly impact on the size of single particle and carbon atom density of particle. This is one of interesting behaviors need to be investigated for better understanding. The results of this research would be used as basic information for design and develop removing process of PM emitted from engine combustion which using in diesel and biodiesel fuels.
Technical Paper

Experimental Investigation in Combustion Characteristics of Ethanol-gasoline Blends for Stratified Charge Engine

2011-11-08
2011-32-0551
The increasing of global energy demand and stringent pollution regulations have promoted research on alternative fuels. In Thailand, ethanol, can be produced from many sources of national agriculture products as renewable fuel, which was strongly promoted by government due to its many merits for use in transportation field. In this study, combustion characteristics of ethanol-gasoline blend (20%, 85%, and 100%) as well as pure gasoline (E0) were investigated by using a swirl-generated constant volume combustion chamber. Flame propagations of different fuel blends were observed by high speed Schlieren photography technique while pressure history data were recorded for detailed combustion analysis. Combustion behavior, combustion duration and rate of pressure rise of all tested fuels were investigated in various swirl intensities and equivalence ratios. In addition, effect of swirl intensities and ethanol concentration on lean misfire limit were also discussed.
Technical Paper

Low Temperature Starting Techniques for Ethanol Engine without Secondary Fuel Tank

2011-11-08
2011-32-0552
The present study aims to investigate the parameters affecting cold start characteristics of ethanol at low temperature, and suggest a solution to avoid cold starting problem without the installation of second fuel tank. The testing engine is a 125cc volume displacement, single-cylinder four strokes SI engine with fuel injection and ignition timing system controlled by ECU (electronic control unit). The cold starting performance tests were extensively conducted with different percentages of ethanol blends, surrounding temperatures, heating inside combustion chamber, heater injector, pre-cranking without fuel injection, and amount of fuel injection. From the experimental results, when using ethanol fuel in conventional engine, the problem of cold starting was observed at surrounding temperature lower than 20°C for ethanol. Increasing of injection duration can lower the possible cold start temperature of neat ethanol.
Technical Paper

Effect of Biofuel and Soot on Metal Wear Characteristic Using Electron Microscopy and 3D Image Processing

2017-11-05
2017-32-0095
The soot contamination in used engine oils of diesel engine vehicles was about 1% by weight. The soot and metal wear particle sizes might be in the range of 0-1 µm and 1-25 µm, respectively. The characteristics of soot affecting on metal wear was investigated. Soot particle contamination in diesel engine oil was simulated using carbon black. Micro-nanostructure of soot particles were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and laser diffraction spectroscopy (LDS). The metal wear behavior was studied by means of a Four-Ball tribology test with wear measured. Wear roughness in micro-scale was investigated by high resolution optical microscopy (OM) , 3D rendering optical technique and SEM image processing method. It was found that the ball wear scar diameter increased proportionally to the soot primary particle size. The effect of biodiesel contamination were also increasing in wear scar diameter.
Technical Paper

Impact of Biodiesel on Small CI Engine Combustion Behavior and Particle Emission Characteristic

2017-11-05
2017-32-0094
Diesel engines are high thermal efficiency because of high compression ratio but produce high concentration of particulate matter (PM) because of direct injection fuel diffusion combustion. PM must be removed from the exhaust gas to protect human health. This research describes biodiesel engine performance, efficiency and combustion behavior using combustion pressure analyzer. It was clearly observed that PM emitted from CI engines can be reduced by using renewable bio-oxygenated fuels. The morphology and nanostructure of fossil fuel and biofuel PMs were investigated by using a Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The morphology of biodiesel and diesel doesn’t have much different in the viewpoint of particulate matter trapping using DPF micro surface pores. The agglomerated ultrafine particles and primary nanoparticles sizes of diesel and biodiesel engine’s PM are approximately 50-500 nm and 20-50 nm, respectively.
Technical Paper

The Effect of Exhaust Gas Recirculation on Performance and Emission of Ethanol Fumigated Diesel Engine

2017-11-05
2017-32-0101
Primary energy source such as fossil fuel keep decreasing due to various kind of usage. According to less amount of the fossil fuel, human seeks for an alternative fuel source such as alcohol. Alcohol like ethanol can be produced easily from strarchy plant. But using alcohol as blended fuel with diesel fuel doesn't work well because alcohol has low cetane number, lack of lubricity and very low miscibility with diesel fuel. To overcome this, fumigation system or port fuel injection of alcohol seems interesting. Although it requires more complicate system but it can compensate the miscibility issue and alcohol can be used in higher dose to give more energy. Diesel engine produces a lot of emission such as NOx and some other carbon content emission like HC, CO and soot due to they run in lean condition as their characteristic. Modern diesel engines are now coupled with exhaust gas recirculation system to help reduce in main emission like NOx.
Technical Paper

Characterization of Biodiesel Particle Emission in Trapping and Regeneration Processes on Cordierite Diesel Particulate Filter

2015-11-17
2015-32-0821
As well-known, the diesel engine has the highest thermal efficiency at the same load as compared with internal combustion engine but its disadvantage is particulate matter (PM) emitted to the atmosphere. The studies of this paper were divided into two parts. The first part studied the quantity of PM from the both diesel and biodiesel fuels at 80% load (2400 rpm) by the trapping process on diesel particulate filter (DPF) used in a partial flow dilution tunnel. The second part studied the regeneration process of PM under the flow rate of oxygen and nitrogen gas of 13.5 L/min with 10%, 15%, and 21% of oxygen gas. The result showed that amount of PM from biodiesel fuel was lower around two times than PM from diesel fuel. The duration in regeneration process of biodiesel's PM was shorter than diesel while increasing of oxygen percentage can reduce regeneration time.
X