Criteria

Text:
Display:

Results

Viewing 1 to 30 of 33
2009-05-19
Technical Paper
2009-01-2132
L.-R. Wang, Z.-H. LU, I. Hagiwara
Hydraulically damped rubber mount (HDM) can effectively attenuate vibrations transmitting between automotive powertrain and body/chassis, and reduce interior noise of car compartment. This paper involves an analytical qualitative analysis approach of dynamics characteristics of HDM. Analysis of experimental results verifies the effectiveness of the qualitative analysis approach. Frequency- and amplitude-dependent dynamic characteristic of HDM are investigated to clarify working mechanism of HDM. The presented qualitative analysis approach provides a convenient performance adjustment guideline of HDM to meet vibration isolation requirements of powertrain mount system.
2014-03-24
Journal Article
2014-01-2001
Teerapharp Amornsawaddirak, Sittikorn Lapapong, Szathys Songschon, Masaaki Okuma
In an automotive suspension, a shock absorber plays a significant role to enhance the vehicle performances, particularly ride comfort and road holding. Because of its important influences on the overall vehicle performances, the understanding of its physical characteristics is essential. Thus, this paper develops a mathematical model of twin-tube shock absorber that is widely used in modern production cars. The model is derived based on a rational polynomial formulation. This formulation generally represents the flow behaviors of fluid across a restriction. Further, simulation results are compared to those obtained from experiments to determine the model accuracy. The result comparison illustrates that the model is able to describe the behavior of shock absorber with slight discrepancies.
2011-05-17
Technical Paper
2011-39-7244
Hiroshi Uchida, Naota Fukushima, Ichiro Hagiwara
Energy optimal control theory (EOC) is applied to the energy flow control of a hybrid electric vehicle. Since the differential equation is solved analytically, the control law can be easily implemented in real time. Because the objective function is described in power form that permits negative value, not only the energy consumption is minimized but also the energy regeneration by the motor is maximized. In the simulation for the 10-mode driving, it is shown that the fuel cost of EOC is 15% lower than the rule based control (RBC).
1993-05-01
Technical Paper
931344
Toshinari Shiotsuka, Akio Nagamatsu, Kazuo Yoshida
Two methods have been developed for real time identification and classification of the roughness pattern of road surfaces using the neural network. These methods are directly available both for semi-active and active vibration controls of cars. Accelerations of the rear wheel axis under the suspension are used as the input data for real time identification. The neural network which has acquired the informations of the seven typical roughness patterns is used for real time classification of actual road surfaces during driving. Validity and usefulness of these methods are verified by simulation.
1997-05-20
Technical Paper
971949
Zhongyang Guo, Itsuro Kajiwara, Akio Nagamatsu, Tsutomu Sonehara
State-space solutions of H∞ controller have been well developed. Hence to a real structure control design, the first step is to get a state space model of the structure. There are analytical and experimental dynamic modeling methods. As we know, it is hard to obtain an accurate model for a flexible and complex structure by FEM(Finite Element Method). Then the experimental modeling methods are used. In this paper, we use frequency domain modal analysis technique based on system FRF(Frequency Response Function) data and ERA(Eigensystem Realization Algorithm) time domain method based on system impulse response data to establish state-space model in order to design H∞ control law for the purpose of vibration suppression. The robust control implementation is exerted on a testbed (truck cab model device) with three degrees of freedom. The validity of experimental state-space modeling is testified and the obvious vibration control performances are achieved.
1997-10-01
Technical Paper
972959
Takeyuki Kamimoto, Tomohiro Minagawa, Shigeharu Kobori
A thermodynamic two-zone model which assumes a stoichiornetric burned gas region and unburned air region is presented in an attempt to calculate more precise rate of heat release of diesel combustion. A comparison is made of the rate of heat release obtained by the two-zone model with that obtained by the conventional single-zone model. It shows around 10 % increase in the rate of heat release with the two-zone model. The effect of state equation of gas is also examined with the single-zone model and the use of a real gas law in stead of the perfect gas law is found to yield minor difference in the rate of heat release at a high boost operating condition.
1998-02-23
Technical Paper
980501
Takeyuki Kamimoto, Masataka Akiyoshi, Hidenori Kosaka
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a simple quasi-steady spray model coupled with the Shell kinetics model at various operating conditions and validity of this model is assessed by a comparison with existing experimental data. The calculated results indicate that the competition between the heat absorption of fuel and the hot air entrainment determines the equivalence ratio of mixtures favorable for the ignition to occur in the shortest time.
1992-10-01
Technical Paper
922208
Takeyuki Kamimoto, Shigeharu Kobori, Seok Hong Noh, Yoshiteru Enomoto
Local heat flux from the flame to the combustion chamber wall, q̇, was measured the wall surfaces of a rapid compression-expansion machine which can simulate diesel combustion. Temperature of the flame zone, T1, was calculated by a thermodynamic two-zone model using measured values of cylinder pressure and flame volume. A local heat transfer coefficient was proposed which is defined as q̇/(T1-Tw). Experiments showed that the local heat transfer coefficient depends slightly on the temperature difference, T1-Tw, but depends significantly on the velocity of the flame which contacts the wall surface.
1994-11-01
Technical Paper
942329
Masaaki Kanoh, Hidekatsu Hamatani, Takeshi Inaba, Yoshiki Matsuo
Robust performance control of an autocruise system for a heavy-duty truck is described. The controller design is carried out employing a loopshaping method, considering dynamics variation caused by the gear shift, the load changes, the vehicle speed and also the vibrational characteristics of the propulsion system as the plant uncertainty. Thereby a robust-stable controller is obtained without sacrificing the response to disturbances. Finally, nonlinear simulations and real vehicle experiments prove that the steady-state performance and its robustness excel the conventional PID's.
1994-03-01
Technical Paper
940229
Toshinari Shiotsuka, Akio Nagamatsu, Kazuo Yoshida, Mitsuru Nagaoka
Two kinds of active control systems, using neural networks (NN), are presented for realizing optimal driving motion of four wheel steer (4WS) cars. The first system is based on the assumption that the car is simplified as a linear two wheel bycycle model, and that the friction force between tire and road surface is represented by Fiala's nonlinear model. The nonlinear relation between the slip angle of tire and the cornering force is expressed with NN. A model-following type control strategy is adopted in the first system, with both the feedforward and feedback gains for the control of the rear wheel steering angle adaptively determined with NN according to change of front wheel steering angle. The second system is based on the assumption that both the dynamical characteristics of the car and the tire friction force are nonlinear. The nonlinear dynamical characteristics of the car and the friction force are identified with NN, using the measured data of an actual car.
1995-10-01
Technical Paper
952514
Shigeharu Kobori, Takeyuki Kamimoto
A rapid compression-expansion machine was developed, which can simulate intake, compression, expansion and exhaust strokes in a single Diesel cycle by an electrically controlled and hydraulically actuated driving system. The whole system which is composed of a hydraulic actuator, fuel injector and a valve driving device, is sequentially controlled by a micro-computer. The machine features; 1) accurate control of piston position at TDC, 2) no effect of lubricant on HC emission due to the use of dry piston rings; 3) independent control of local wall temperature; and 4) high power output to drive heavy piston at high frequency. The single cycle operation permits Diesel combustion experiments under a wide range of operating conditions and easy access of optical diagnostics with minimized amount of test fuel. The performance test showed that the machine can drive a DI Diesel type piston with a 100 mm bore at a maximum frequency of 16.7 Hz at a maximum compression pressure of 15 MPa.
1995-10-01
Technical Paper
952433
Hidenori Kosaka, Takao Suzuki, Takeyuki Kamimoto
The turbulent dispersion of particles in an unsteady two dimensional particle-laden jet was simulated by a discrete vortex method coupling with a model of gas/particles interaction. Numerical analysis of a spray yielded the distributions of vorticity, fuel mass concentration and local Sauter mean diameter (SMD) of droplets in a spray. The predicted distribution of local SMD of droplets in a spray demonstrated that the size of droplets in the spray periphery is larger than that of droplets in the center region of spray. This trend of distribution of drop size coincided with that of measured one. The predicted distributions of drop size and vorticity revealed that the larger droplets are easily centrifuged to the periphery of the spray. The effects of the pattern of injection rate on the mixing process in a transient spray were also investigated.
1993-10-01
Technical Paper
932657
Takeyuki Kamimoto, Yoshiyuki Yamane, Hidenori Kosaka, Haruki Kobayashi
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
2005-06-14
Technical Paper
2005-01-2738
Yusuke Miyazaki, Sadayuki Ujihashi, Masaaki Mochimaru, Makiko Kouchi
The influence of the head shape on intracranial responses under impact was investigated by using Finite Element Method. Head shape models of 52 young adult male Japanese were analyzed by Multi Dimensional Scaling (MDS), and a 2 dimensional distribution map of head shapes was obtained. Five finite element models of the Japanese head were constructed by a transformed finite element model of an average European adult male (H-Head model) using Free Form Deformation (FFD) technique. The constructed models represent the 5th and 95th percentile of the first 2 scales obtained by MDS. The same acceleration pulse was applied to the H-Head model and the five finite element models. The cause of the difference was considered to be differences in pressure distribution in the brain caused by the differences in the head shape. Variation in the head shape should be taken into account in simulating the effects of impact using a finite element model.
2006-11-13
Technical Paper
2006-32-0083
Takeshi Okada, Kazuyuki Shiomi, Tetsuro Ikeno, Tomatsu Taro, Masaaki Okuma
The method was established to identify the dynamic stiffness of the engine mount using modal parameters acquired from experimental modal analysis. Vibration tests were conducted using actual large outboard motor the BF225 (165 kW), and the dynamic stiffness of the mounts was identified. The results show that this method can identify the engine mount dynamic stiffness more adequately than the conventional method, even when the engine mounts are subjected to loads corresponding to thrust force or even in the case that the stiffness of the parts supporting an outboard motor is low.
2008-04-14
Journal Article
2008-01-1069
Tetsuya Aizawa, Hidenori Kosaka
In order to investigate the mechanism of heat transfer on the chamber wall of direct-injection diesel engines, 2-D temperature imaging and heat flux measurement in the flame impinging region on the chamber wall were conducted using laser-induced phosphorescence technique. The temperature of the chamber wall surface was measured by the calibrated intensity variation of the 355nm-excited laser-induced phosphorescence from an electrophoretically deposited thin layer of La2O2S:Eu phosphor on a quartz glass plate placed in a rapid compression and expansion machine (RCEM). Instantaneous 2-D images of wall temperature at different timings after start of injection and time-resolved (10kHz) heat flux near the flame impinging region were obtained for combusting and non-combusting diesel sprays with impinging distance of 23.4mm at different injection pressures (80 and 120MPa).
2004-06-08
Technical Paper
2004-01-2014
Shin Kimura, Hidenori Kosaka, Yukio Matsui, Ryutaro Himeno
The purpose of this study is to investigate the turbulent mixing in a diesel spray by large eddy simulation (LES). As the first step for the numerical simulation of diesel spray by LES, the LES of transient circular gas jets and particle laden jets were conducted. The simulation of transient circular jets in cylindrical coordinates has numerical instability near the central axis. To reduce the instability of calculation, azimuthal velocity around the central axis is calculated by the linear interpolation and filter width around the axis is modified to the radial or axial grid scale level. A transient circular gas jet was calculated by the modified code and the computational results were compared with experimental results with a Reynolds number of about 13000. The computational results of mean velocity and turbulent intensity agreed with experimental results for z/D>10. Predicted tip penetration of the jet also agreed to experimental data.
2015-09-01
Journal Article
2015-01-2015
Keisuke Nakamura, Hiroshi Oki, Ryoko Sanui, Yutaro Kinoshita, Nobuhiro Hidaka, Masamichi Tanaka, Hiroaki Matsumoto, Katsunori Hanamura
The diesel particulate membrane filter (DPMF) is a good solution to the problem of high pressure drop that exists across diesel particulate filters (DPFs) as a result of the soot trapping process. Moreover, DPMFs that have a membrane layer composed of SiC nanoparticles can reduce the oxidation temperature of soot and the apparent activation energy. The SiC nanoparticles have an oxide layer on their surface, with a thickness less than 10 nm. From the visualization of soot oxidation on the surface of SiC nanoparticles by an environmental transmission electron microscope (ETEM), soot oxidation is seen to occur at the interface between the soot and oxide layers. The soot oxidation temperature dependency of the contact area between soot and SiC nanoparticles was evaluated using a temperature programmed reactor (TPR). The contact area between soot and SiC nanoparticles was varied by changing the ratio of SiC nanoparticles and carbon black (CB), which was used as an alternative to soot.
2015-09-01
Technical Paper
2015-01-1910
Basmil Yenerdag, Masayasu Shimura, Yoshitsugu Naka, Mamoru Tanahashi, Yuzuru Nada
A direct numerical simulation of turbulent premixed flames in a constant volume vessel is conducted to understand flame-wall interactions and heat loss characteristics under the pressure rising condition. The contribution of the burnt region to the total heat flux is more significant compared to the reaction region. The velocity profiles indicate inward and outward motions. The profile of the turbulent kinetic energy is damped by the wall, and no distinct turbulence production is observed. Since the turbulence is weakened in the burnt region, the effect of near wall turbulence to the total wall heat flux is considered to be limited.
2015-09-01
Technical Paper
2015-01-1909
Basmil Yenerdag, Masayasu Shimura, Kozo Aoki, Yoshitsugu Naka, Mamoru Tanahashi, Yuzuru Nada
Three-dimensional direct numerical simulations of methane-air turbulent premixed flame propagating in homogenous isotropic turbulence are conducted to investigate local and global flame structure in thin reaction zones. GRI-Mech 3.0 is used to represent methane-air reactions. The equivalence ratio of unburned mixture is 0.6 and 1.0. For a better understanding of the local flame structure in thin reaction zones, distributions of mass fractions of major species, heat release rate and temperature are investigated. To clarify effects of turbulence on the local and global flame structures, the statistical characteristics of flame elements are also revealed.
1999-08-02
Technical Paper
1999-01-2671
Osamu Yokota, Masaki Nezuka, Yoshinori Oku, Yukitoshi Hosokawa, Jun Matsunami, Yutaka Tamaura, Katsushige Nakamura, Mitsunobu Kitamura
A new solar furnace system using a stationary elliptic dish and heliostats is proposed. Since the elliptic dish has two focuses (an upper focus and a lower focus) for elliptic geometry, this system has three advantages. The first is enable to fix a solar reactor on the ground, the second to expand the heliostat field largely, and the third to concentrate the direct solar radiation in a small area around the lower focus. The horizontal deviation from the lower focus of the direct solar radiation was estimated within ±1.2m for the heliostat field of 100m and the tower-reflector height of 70m. The system using the elliptic dish and heliostats is available as high-concentration system due to large scale of solar energy.
1999-08-02
Technical Paper
1999-01-2670
Yukitoshi Hosokawa, Noriko Kojima, Osamu Yokota, Noriko Hasegawa, Jun Matsunami, Yutaka Tamaura
Multi-step water splitting with Mn-ferrite(MnFe2O4)/sodium carbonate(Na2CO3) system accompanying endothermic reaction was investigated for converting solar energy into chemical energy. This water splitting is caused by the oxidation-reduction of manganese ion in the Mn-ferrite. Multi-water splitting with MnFe2O4/Na2CO3 system was consisted of three steps. The first step was hydrogen generation at 1073K. The second step was oxygen release at 1273K. The third step was Na2CO3 reproduction at 873K. The mechanism of multi-water splitting has been considered by XRD, chemical analysis of colorimetry and back titration. The temperature range 873 to 1273K is quite lower than those studied on the solar furnace reaction (O2 releasing step) in two-step water splitting (1500-2300K). This lower temperature range would permit further progress in converting the direct solar energy into chemical energy.
1999-08-02
Technical Paper
1999-01-2649
Kunio Yoshikawa
A new energy extraction and utilization system for low grade solid fuels such as coal and wastes is proposed, where solid fuels are gasified with high temperature air. The syngas is first cooled in a waste heat recovery boiler to extract its sensible thermal energy followed by conventional low temperature gas cleaning. A part of this cleaned-up syngas is used for high temperature air preheating while the rest is used for various energy utilization and conversion systems such as industrial furnaces, boilers and gas turbines. Experimental demonstration results for two main components, i.e. a gasifier and a high temperature air preheater are reported.
2000-06-19
Technical Paper
2000-01-1892
Tomohiro Minagawa, Hidenori Kosaka, Takeyuki Kamimoto
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a discrete droplet spray model (DDM) coupled with the Shell kinetics model at various operating conditions. Predicted results show that the fuel mixture injected at the start of injection, which travels along midway between the spray axis and the spray periphery, contributes heavily to the first ignition in a spray. The equivalence ratio and temperature of the first ignited mixture are kept nearly constant until the start of hot ignition. The temperature of the first ignited mixture is kept at a constant value of higher temperature than the thermodynamic equilibrium temperature of the mixture before the hot ignition starts. The equivalence ratio of the first ignited mixture is around 1.6 at initial gas temperatures between 750 K and 850 K.
2001-04-30
Technical Paper
2001-01-1579
Du Wang, Ichiro Hagiwara, Zhongyang Guo
This paper presents the polytopic modeling method and state variable observer design approach for semi-active suspension with changeable damping and variant stiffness elements. And such semi-active suspension system is suitable to be modeled as a dynamic polytopic system where the extreme vertices of damping and stiffness values are taken as the convex vertices of polytope. Thus, a dynamic polytopic model is the convex synthesis with all the vertex system dynamics and linear system theory can be applied to the system at each vertex. Herein, the conventional Kalman filter theory is utilized to design the observer for each vertex system, then the polytopic observer is formulated by a convex synthesis. The proposed observer design approach is testified by numerical study and vehicle test.
2001-04-30
Technical Paper
2001-01-1580
Zhongyang Guo, Du Wang, Ichiro Hagiwara
As an important class of nonlinear system, polytopic bilinear system is investigated. Combined with the properties of convex polytope, the nonlinear control for polytopic bilinear system is formulated by synthesizing nonlinear H∞ controller which is designed for polytopic bilinear system at vertices. For a semi-active suspension system with controllable damping and variant stiffness elements, it is easily modeled as a polytopic bilinear system model. In this case, the desired nonlinear control properties are pursued in making effective use of the changeable damping property while the variant stiffness is taken as the affine parameter of polytopic model. Therefore, polytopic bilinear system model could be reduced to a feasible problem by polytopic convex decomposition. Then the control problem of bilinear system model is to find a solution of nonlinear H∞ control.
2001-04-30
Technical Paper
2001-01-1453
Wang Li-Rong, LU Zhen-Hua, Hagiwara Ichiro
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
2001-11-12
Technical Paper
2001-01-2810
Tetsuya Sakai, Mitsuo Iwahara, Yutaka Shirai, Ichiro Hagiwara
In this study, the genetic algorithm so called GA is newly applied for the optimization of many engine mounting parameters, calculations of stiffness matrix and inverse matrix to obtain 6 degrees of freedoms displacements at mounting points and a center of gravity. As a result, the optimized result could be shortly obtained in a minute, and an inexperienced engineer could easily make the optimum engine mounting layout, which can satisfy the vibration isolation and the non-interference in an engine compartment.
1988-10-01
Technical Paper
881640
Takeyuki Kamimoto, Hidehiko Kando, Shigeharu Kobori, Hiraku Hatano, Haruki Kobayashi, Kazuo Tsuchiya
A rapid compression-expansion machine which can simulate the combustion processes in diesel engines is developed. The configuration of the combustion chamber is a 100 mm bore and a 90 mm stroke, and the compression ratio is 15. The piston is driven by an electro-hydraulic system with a thrust of 90 kN and the maximum frequency of 20 Hz. The whole system composed of a hydraulic actuator, a fuel injection system, and a valve driving unit is sequentially controlled by a computer. The reproducibility of the stop position of the piston at the end of compression is achieved with an accuracy of ±0.1 mm by employing a hydraulic-mechanical brake mechanism. The experiment shows that the combustion in the expansion stroke is achieved, and that the combustion characteristics such as the rate of heat release and indicated output as well as the exhaust emission can be measured.
1986-02-01
Technical Paper
860551
Tetsuro Butsuen, Masaaki Ookuma, Akio Nagamatsu
This paper concerns the Direct System Identification Method (hereafter referred to as DSIM) which allows accurate and quick determination of two groups of properties which exercise dominant effects on low frequency vibration of a vehicle body. The first group is the rigid body properties of an engine. The second group is the properties of each engine mount. Under the assumption that the engine/mount system is a rigid body, this paper makes theoretical discussion for using the DSIM to induce the parameters of an engine/mount system, and makes improvements for better correlation with experiments. Also mentioned is a comparison of this study with the experimental results and verification of consistency on those parameters obtained from DSIM to predict the accurate vehicle characteristics, along with the role this method will play in upgrading the technology of prediction analysis.
Viewing 1 to 30 of 33

Filter

  • Range:
    to:
  • Year: