Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Brake Judder Induced Steering Wheel Vibration: Experiment, Simulation and Analysis

2007-10-07
2007-01-3966
The prevention and control of brake judder and its various negative effects has been a key target of vehicle production. One of the effects is the steering wheel vibration during vehicle braking. Experimental and theoretical investigation into “steering wheel vibration due to brake judder” is extensively presented in this paper. The vehicle road test is carried out under controlled braking conditions. During the test, the accelerations of brake caliper assembly, suspension low and upper control arm, steering arm, tie rod and steering wheel, left and right wheel rotary speed, are measured by a multi-channel data acquisition system. The data processing focuses on order tracking analysis and transfer path analysis to work out the related resonant components. A disc brake assembly, with deliberately designed disc thickness variation and surface run-out combinations, is tested on a brake dynamometer.
Technical Paper

Path Following of Skid Steering Vehicles Based on Line-of-Sight Navigation

2016-09-14
2016-01-1871
Path following controller of a six-wheel skid-steering vehicle is designed. The vehicle speed is controlled through engine speed control and the lateral vehicle steering is controlled through hydraulic braking on each side. Contrary to the common approaches considering non-holonomic constraints, vehicle dynamic characteristics and nonlinear characteristics of tire are considered. A hierarchical control structure is applied in this vehicle control system. The kinematic controller works out the reference yaw rate and reference vehicle speed. And a robust dynamic controller tracks the reference signal. In addition, the dynamic controller takes actuator ability into account.
Technical Paper

Vehicle Sideslip Angle Estimation Considering the Tire Pneumatic Trail Variation

2018-04-03
2018-01-0571
Vehicle sideslip angle is significant for electronic stability control devices and hard to estimate due to the nonlinear and uncertain vehicle and tire dynamics. In this paper, based on the two track vehicle dynamic model considering the tire pneumatic trail variation, the vehicle sideslip angle estimation method was proposed. First, the extra steering angle of each wheel caused by kinematics and compliance characteristics of the steering system and suspension system was analyzed. The steering angle estimation method was designed. Since the pneumatic trail would vary with different tire slip angle, distances between the center of gravity (COG) and front&rear axle also change with the tire slip angle. Then, based on the dynamic pneumatic trail and estimated steering angle, we modified the traditional two track vehicle dynamic model using a brush tire model. This model matches the vehicle dynamics more accurately.
Technical Paper

Estimation of the Real Vehicle Velocity Based on UKF and PSO

2014-04-01
2014-01-0107
The unscented Kalman filter (UKF) is applied to estimate the real vehicle velocity. The velocity estimation algorithm uses lateral acceleration, longitudinal acceleration and yaw rate as inputs. The non-linear vehicle model and Dugoff tire model are built as the estimation model of UKF. Some parameters of Dugoff tire model and vehicle, which can't be measured directly, are identified by the particle swarm optimization (PSO). For the purpose of evaluating the algorithm, the estimation values of UKF are compared with measurements of the Inertial and GPS Navigation system. Besides, the real time property of UKF is tested by xPC Target, which is a real-time software environment from MathWorks. The result of the real vehicle experiment demonstrates the availability of the UKF and PSO in vehicle velocity estimation.
Technical Paper

Path Following Control for Skid Steering Vehicles with Vehicle Speed Adaption

2014-04-01
2014-01-0277
In this paper we present a path following control design for a six-wheel skid-steering vehicle. Contrary to the common approaches that impose non-holonomic constraints, a dynamic vehicle model is established based on a pseudo-static tire model, which uses tire slip to determine tire forces. Our control system admits a modular structure, where a motion controller computes the reference vehicle yaw rate and reference vehicle speed and a dynamics controller tracks these signals. A robust nonlinear control law is designed to track the reference wheel speeds determined by the dynamics controller with proved stability properties. Saturated control techniques are employed in designing the reference yaw rate, which ensures the magnitude of the reference yaw rate does not violate the constraint from the ground-tire adhesion. The simulation results demonstrate the effectiveness of the proposed path following control design.
Technical Paper

Optimal Torque Allocation for Distributed Drive Electric Skid-Steered Vehicles Based on Energy Efficiency

2018-04-03
2018-01-0579
Steering of skid-steered vehicles without steering mechanism is realized by differential drive/brake torque generated from in-wheel motors at left and right sides. Compared to traditional Ackerman-steered vehicles, skid-steered vehicles consume much more energy while steering due to greater steering resistance. Torque allocation is critical to the distributed drive skid-steered vehicles, since it influences not only steering performance, but also energy efficiency. In this paper, the dynamic characteristics of six-wheeled skid-steered vehicles were analyzed, and a 2-DOF vehicle model was established, which is important for both motion tracking control and torque allocation. Furthermore, a hierarchical controller was proposed. Considering tire force characteristics and tire slip, the upper layer calculates the generalized force and desired yaw moment based on anti-windup PI (proportion-integral) control method.
Technical Paper

Dynamic Switch Control of Steering Modes for 4WID-4WIS Electric Vehicle Based on MOEA/D Optimization

2023-04-11
2023-01-0641
To overcome the shortcoming that vehicles with multiple steering modes need to switch steering modes at parking or very low speeds, a dynamic switch method of steering modes based on MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition) was proposed for 4WID-4WIS (Four Wheel Independent Drive-Four Wheel Independent Steering) electric vehicle, considering the smoothness of dynamic switch, the lateral stability of the vehicle and the energy economy of tires. First of all, the vehicle model of 4WID-4WIS was established, and steering modes were introduced and analyzed. Secondly, the conditions for the dynamic switch of steering modes were designed with the goal of stability and safety. According to different constraints, the control strategy was formulated to obtain the target angle of the active wheels. Then aiming at the smoothness of the dynamic switch, the active wheel angle trajectory was constructed based on the B-spline theory.
Journal Article

Influence Mechanism of Electromechanical Parameters on Transient Vibration of Electric Wheel System

2019-04-02
2019-01-0462
Electric wheel systems of in-wheel motor driven vehicles consist of the motor controller, in-wheel motor and tire-suspension assembly. The coupling between the electromagnetic excitation and elastic structure gives rise to electromechanical dynamic issues. As for the structural layout of the electric wheel system, the driving motor is directly connected to the wheel without torsion dampers or transmission in the driveline, thus making the electric wheel structure a weak damping system. Moreover, the driving torque of electric wheel can change rapidly in various conditions of vehicle. As a result, the transient vibration problem becomes one of the key electromechanical dynamic issues in the electric wheel system. To investigate this problem, the electromechanical coupling model of the electric wheel system is established first. Then the transient responses of the electric wheel under abrupt changes of the driving torque are simulated.
Technical Paper

Optimization Design and Performance Verification of the Second Generation Single Motor Plug-in Hybrid System (EDU) of SAIC Motor Vehicle Company

2023-04-11
2023-01-0446
SEAT Department of SAIC Motor Vehicle Company starts innovatively applying the single motor and P2.5 configuration scheme from EDU G2(Electric Drive Unit Generation 2), which consists of six engine gears and four motor gears. EDU G2 is very compact and adaptable through the coupling design. Gear coupling make the engine and motor coordination limited, so as to the high efficiency zone of the engine and the high efficiency zone of the motor cannot match in some working conditions, which affect the performance of the vehicle. Therefore, SEAT developed the second generation of single-motor plug-in hybrid system EDU G2 Plus EDU G2(Electric Drive Unit Generation 2 Plus), which realized the decoupling design of 5 engine gears and 2 motor gears, so that the power output of engine and motor is freely. With excellent power and economic performance, the vehicle has been well received by customers.
Technical Paper

Composite Steering Strategy for 4WS-4WD EV Based on Low-Speed Steering Maneuverability

2019-11-04
2019-01-5052
A composite steering control strategy, which combines four-wheel steering (4WS) and differential steering, is proposed in this paper, to optimize steering maneuverability in the conditions where the vehicle speed is below 15 Km/h, mainly for U-turning and parking conditions. A dynamic model is developed for the steering system and the tire system. Taking different steering wheel inputs into consideration, a 4WS control strategy proportional to the front wheel steering angle is quoted to improve the steering maneuverability in the low speed conditions and guarantee the manipulability by controlling the side slip of the vehicle. Based on the 4WS system, this paper explores the possibility of further improving the low-speed maneuverability of the vehicle through differential steering. And the differential steering control strategy is developed, including four hub-motor output modes. A composite steering controller is designed based on the 4WS-4WD electric vehicle platform.
Technical Paper

Analysis and Design of Suspension State Observer for Wheel Load Estimation

2024-04-09
2024-01-2285
Tire forces and moments play an important role in vehicle dynamics and safety. X-by-wire chassis components including active suspension, electronic powered steering, by-wire braking, etc can take the tire forces as inputs to improve vehicle’s dynamic performance. In order to measure the accurate dynamic wheel load, most of the researches focused on the kinematic parameters such as body longitudinal and lateral acceleration, load transfer and etc. In this paper, the authors focus on the suspension system, avoiding the dependence on accurate mass and aerodynamics model of the whole vehicle. The geometry of the suspension is equated by the spatial parallel mechanism model (RSSR model), which improves the calculation speed while ensuring the accuracy. A suspension force observer is created, which contains parameters including spring damper compression length, push rod force, knuckle accelerations, etc., combing the kinematic and dynamic characteristic of the vehicle.
X