Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Design and Thermal Analysis of a Passive Thermal Management System Using Composite Phase Change Material for Rectangular Power Batteries

2015-04-14
2015-01-0254
A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent.
Technical Paper

State-of-the-Art and Development Trends of Assembly Technologies for Proton Exchange Membrane Fuel Cell Stack: A Review

2020-04-14
2020-01-1175
Proton Exchange Membrane Fuel Cell (PEMFC) uses hydrogen and oxygen for fuel, the whole energy conversion process almost has no negative impact on the environment. The PEM fuel cell stack with the advantages of low-operating temperature, high current density and fast start-up ability is considered to be the next generation of new electric vehicle power. However, due to the limited current output, it is difficult for a single cell to meet the practical application requirements. The actual fuel cell stack is formed by many single cells assembled together. The assembly process is often related to load transfer, material transfer, energy exchange, multi-phase flow, electrochemical reaction and other factors. The performance of MEA (Membrane Electrode Assembly), sealing gaskets and other components will change during the assembly process, which makes the fuel cell stack assembly process more complex.
Technical Paper

3-Dimensional Numerical Simulation on CuO Nanofluids as Heat Transfer Medium for Diesel Engine Cooling System

2020-04-14
2020-01-1109
CuO-water nanofluids was utilized as heat transfer medium in the cooling system of the diesel engine. By using CFD-Fluent software, for 0.5%, 1%, 3% and 5% mass concentration of nanofluids, 3-dimensional numerical simulation about flow and heat transfer process in the cooling system of engine was actualized. According to stochastic particle tracking in turbulent flow, for solid-liquid two phase flow discrete phase, the moving track of nanoparticles was traced. By this way, for CuO nanoparticles of different mass concentration nanofliuds in the cooling jacket of diesel engine, the results of the concentration distribution, velocity distribution, internal energy variation, resident time, total heat transfer and variation of total pressure reduction between inlet and outlet were ascertained.
Technical Paper

In Cycle Pre-Ignition Diagnosis and Super-Knock Suppression by Employing Ion Current in a GDI Boosted Engine

2020-04-14
2020-01-1148
In this paper, a low-speed pre-ignition (LSPI) diagnostic strategy is designed based on the ion current signal. Novel diagnostic and re-injection strategies are proposed to suppress super-knock induced by pre-ignition within the detected combustion cycle. A parallel controller system that integrates a regular engine control unit (ECU) and CompactRIO (cRIO) from National Instruments (NI) is employed. Based on this system, the diagnostic and suppression strategy can be implemented without any adaptions to the regular ECU. Experiments are conducted on a 1.5-liter four-cylinder, turbocharged, direct-injected gasoline engine. The experimental results show two kinds of pre-ignition, one occurs spontaneously, and the other is induced by carbon deposits. Carbon deposits on the spark plug can strongly interfere with the ion current signal. By applying the ion current signal, approximately 14.3% of spontaneous and 90% of carbon induced pre-ignition cycles can be detected.
Technical Paper

Characteristics of Auto-Ignition for Lubricants and Lubricant/Gasoline Based on an Innovative Single Droplet Test System

2020-04-14
2020-01-1428
Due to the advantages of low weight, low emissions and good fuel economy, downsized turbocharged gasoline direct injection (GDI) engines are widely-applied nowadays. However, Low-Speed Pre-Ignition (LSPI) phenomenon observed in these engines restricts their improvement of performance. Some researchers have shown that auto-ignition of lubricant in the combustion chamber has a great effect on the LSPI frequency. To study the auto-ignition characteristics of lubricant, an innovative single droplet auto-ignition test system for lubricant and its mixture is designed and developed, with better accuracy and effectiveness. The experiments are carried out by hanging lubricant droplets on the thermocouple node under active thermo-atmosphere provided by a small “Dibble burner”. The auto-ignition process of lubricant droplets is recorded by a high-speed camera.
Journal Article

A Novel ZSB-PAM Power Regulation Method Applied in Wireless Charging System for Vehicular Power Batteries

2015-04-14
2015-01-1194
Wireless charging system for vehicular power batteries is becoming more and more popular. As one of important issues, charging power regulation is indispensable for online control, especially when the distance or angle between chassis and ground changes. This paper proposes a novel power regulation method named Z-Source-Based Pulse-Amplitude-Modulation (ZSB-PAM), which has not been mentioned in the literatures yet. The ZSB-PAM employs a unique impedance network (two pairs of inductors and capacitors connected in X shape) to couple the cascaded H Bridge to the power source. By controlling the shoot-through state of H bridge, the input voltage to H bridge can be boosted, thus the transmitter current can be adjusted, and hence, charging current and power for batteries. A LCL-LCL resonant topology is adopted as the main transfer energy carrier, for it can work with a unity power factor and have the current source characteristic which is suitable for battery charging.
Journal Article

Uncertainty Optimization of Thin-walled Beam Crashworthiness Based on Approximate Model with Step Encryption Technology

2016-04-05
2016-01-0404
Crashworthiness is one of the most important performances of vehicles, and the front rails are the main crash energy absorption parts during the frontal crashing process. In this paper, the front rail was simplified to a thin-walled beam with a cross section of single-hat which was made of steel and aluminum. And the two boards of it were connected by riveting without rivets. In order to optimize its crashworthiness, the thickness (t), radius (R) and the rivet spacing (d) were selected as three design variables, and its specific energy absorption was the objective while the average impact force was the constraint. Considering the error of manufacturing and measurements, the parameters σs and Et of the steel were selected as the uncertainty variables to improve the design reliability. The algorithm IP-GA and the approximate model-RBF (Radial Basis Function) were applied in this nonlinear uncertainty optimization.
Journal Article

Experimental Study of the Plasticity Responses of TRIP780 Steel Subjected to Strain-Path Changes

2016-04-05
2016-01-0363
The work-hardening response of TRIP780 steel subjected to strain-path changes was investigated using two-stage tension experiments. Large specimens were prestrained and then sub-sized samples were subjected to tension along various directions. The influence of strain-path changes on flow stress and work hardening performance was discussed in detail. The specific plastic work was calculated to compare the kinematic hardening behaviour after strain-path changes. The results showed that transient hardening was observed for TRIP780 sheets subjected to orthogonal strain-path change. The strain-hardening exponent (n-value) was influenced by prestraining levels and the strain path. The n-value exhibited a greater decrease under an orthogonal strain-path change. Prestraining can delay the onset of high work hardenability of TRIP steels. It is meaningful for the safety design of vehicles.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Journal Article

Investigation of Combustion Optimization Control Strategy for Stable Operation of Linear Internal Combustion Engine-Linear Generator Integrated System

2016-06-17
2016-01-9144
The linear internal combustion engine-linear generator integrated system (LICELGIS) is an innovative structure as a range-extender for the hybrid vehicles, which contains two opposed free piston engines and one linear generator between them. The LICELGIS is a promising power package due to its high power density and multi-fuel flexibility. In the combustion process of linear engines, the top dead center (TDC) position is not stable in different cycles, which significantly affects system operations. Otherwise, pistons move away from the TDC with high-speed because of the tremendous explosive force, which incurs the short residence time of pistons around the TDC and rapid decrease of in-cylinder temperature, pressure and the combustion efficiency. In order to address this problem, a scientific simulation model which includes dynamic and thermodynamic models, is established and a combustion optimization control strategy is proposed.
Journal Article

Lubrication Analysis of Floating Ring Bearings Considering Floating Ring Heat Transfer

2016-04-05
2016-01-0485
Turbochargers improve performance in internal combustion engines. Due to low production costs, TC assemblies are supported on floating ring bearings. In current lubrication analysis of floating ring bearing, inner and outer oil film are usually supposed to be adiabatic. The heat generated by frictional power is carried out by the lubricant flow. In reality, under real operating conditions, there existed heat transfer between the inner and outer film. In this paper, the lubrication performance of floating ring bearing when considering heat transfer between inner film and outer film is studied. The lubrication model of the floating ring is established and the heat transferred through the ring between the inner and outer film is calculated. The calculation results show that heat flow between the inner and outer film under different outer film eccentricity ratio and rotate ratio has a large difference.
Journal Article

Longitudinal Vibration Analysis of Electric Wheel System in Starting Condition

2017-03-28
2017-01-1126
Due to coupling of in-wheel motor and wheel/tire, the electric wheel system of in-wheel motor driven vehicle is different from tire suspension system of internal combustion engine vehicle both in the excitation source and structural dynamics. Therefore emerging dynamic issues of electric wheel arouse attention. Longitudinal vibration problem of electric wheel system in starting condition is studied in this paper. Vector control system of permanent magnet synchronous hub motor considering dead-time effect of the inverter is primarily built. Then coupled longitudinal-torsional vibration model of electric wheel system is established based on rigid ring model and dynamic tire/road interface. Inherent characteristics of this model are further analyzed. The vibration responses of electric wheel system are simulated by combining electromagnetic torque and the vibration model. The results indicate that abrupt changes of driving torque will cause transient vibration of electric wheel system.
Technical Paper

Joint Calibration of Dual LiDARs and Camera Using a Circular Chessboard

2020-04-14
2020-01-0098
Environmental perception is a crucial subsystem in autonomous vehicles. In order to build safe and efficient traffic transportation, several researches have been proposed to build accurate, robust and real-time perception systems. Camera and LiDAR are widely equipped on autonomous self-driving cars and developed with many algorithms in recent years. The fusion system of camera and LiDAR provides state-of the-art methods for environmental perception due to the defects of single vehicular sensor. Extrinsic parameter calibration is able to align the coordinate systems of sensors and has been drawing enormous attention. However, differ from spatial alignment of two sensors’ data, joint calibration of multi-sensors (more than two sensors) should balance the degree of alignment between each two sensors.
Technical Paper

Simulation Analysis of Early and Late Miller Cycle Strategies Influence on Diesel Engine Combustion and Emissions

2020-04-14
2020-01-0662
Based on the working model of a diesel engine, the influence of 2 Miller cycle strategies-Early Intake Valve Closure (EIVC) and Late Intake Valve Closure (LIVC) on the combustion and emissions of diesel engine was analyzed. Then the working condition of each Miller cycle strategies on the engine under the rated speed was optimized through the adjust of the valve timing, boost pressure and the injection timing. The research found that both delaying and advancing the closure timing of the intake valve can decrease the pressure and temperature during compression stroke, prolonging the ignition delay. However, due to the decrease of the working media inside the cylinder, the average in-cylinder temperature and soot emissions will increase, which can be alleviated by raising the boost pressure and the resulting compensation of the intake loss.
Technical Paper

Recent Progress on In-Situ Monitoring and Mechanism Study of Battery Thermal Runaway Process

2020-04-14
2020-01-0861
Lithium-ion batteries (LIBs) with relatively high energy, power density and eco-friendly characteristic are considered as a vital energy source in consumer market of portable electronics and transportation sector especially in electric vehicles (EVs). To meet the higher capacity requirements, the nickel-rich LIBs with higher capacity has been used as the commercial power batteries. However, the battery with higher energy density is more destructive, which could result in thermal runaway accidents and make the battery safety issues become more and more prominent. Thermal runaway of LIBs is one of the key scientific problems in safety issues. Until now, the inducement of thermal runaway process is complicated which perplex researchers and industry a lot. On the one hand, the internal mechanism about thermal runaway should be deeply studied. On the other hand, in-situ monitoring should be developed to supply the mechanism study and early warning.
Technical Paper

Research on Fast Filling Strategy of Large Capacity On-Board Hydrogen Storage Tank for Highway Passenger Cars

2020-04-14
2020-01-0855
In order to study the fast filling problem of large-capacity on-board hydrogen storage tank for highway passenger cars, a computational fluid dynamics (CFD) simulation model of 134L large-capacity hydrogen storage tank was established. By simulating different pre-cooling temperatures and mass flow rates, the temperature distribution and thermal transmission in the tank were observed. Due to the large ratio of length to diameter of the hydrogen tank, the temperature distribution is extremely uneven during the whole filling process, and the high temperature area is mainly concentrated in the tank tail. And the heat transfer between the gas and the tank wall is not obvious under the low and constant mass flow rate. The temperature rise process during the whole filling process under different mass flow conditions was simulated to satisfy the highest safe temperature limit.
Technical Paper

A Progress Review on Heating Methods and Influence Factors of Cold Start for Automotive PEMFC System

2020-04-14
2020-01-0852
Fuel cell vehicles (FCV) have become a promising transportation tool because of their high efficiency, fast response and zero-emission. However, the cold start problem is one of the main obstacles to limit the further commercialization of FCV in cold weather countries. Many efforts have made to improve the cold start ability. This review presents comprehensive heating methods and influence factors of the research progress in solving the Proton Exchange Membrane Fuel Cells (PEMFC) system cold start problems with more than 100 patents, papers and reports, which may do some help for PEMFC system cold start from the point of practical utilization. Firstly, recent achievements and goals will be summarized in the introduction part. Then, regarding the heating strategies for the PEMFC system cold start, different heating solutions are classified into self-heating strategies and auxiliary-heating heating depending on their heating sources providing approach.
Technical Paper

Development and Demonstration of a New Range-Extension Hybrid Powertrain Concept

2020-04-14
2020-01-0845
A new range-extension hybrid powertrain concept, namely the Tongji Extended-range Hybrid Technology (TJEHT) was developed and demonstrated in this study. This hybrid system is composed of a direct-injection gasoline engine, a traction motor, an Integrated Starter-Generator (ISG) motor, and a transmission. In addition, an electronically controlled clutch between the ISG motor and engine, and an electronically controlled synchronizer between the ISG motor and transmission are also employed in the transmission case. Hence, this system can provide six basic operating modes including the single-motor driving, dual-motor driving, serial driving, parallel driving, engine-only driving and regeneration mode depending on the engagement status of the clutch and synchronizer. Importantly, the unique dual-motor operation mode can improve vehicle acceleration performance and the overall operating efficiency.
Technical Paper

Active and Passive Control of Torsional Vibration in Vehicle Hybrid Powertrain System

2020-04-14
2020-01-0408
The vibration characteristics of hybrid vehicles are very different from that of traditional fuel vehicles. In this paper, the active and passive control schemes are used to inhibit the vibration issues in vehicle hybrid powertrain system. Firstly the torsional vibration mechanical model including engine, motor and planetary gear subsystems is established. Then the transient vibration responses of typical working condition are analyzed through power control strategy. Consequently the active and passive control of torsional vibration in hybrid powertrain system is proposed. The active control of the motor and generator torque is designed and the vehicle longitudinal vibration is reduced. The vibration of the planetary gear system is ameliorated with passive control method by adding torsional vibration absorbers to power units. The vibration characteristics in vehicle hybrid powertrain system are effectively improved through the active and passive control.
Technical Paper

System Evaluation Method for Two Planetary Gears Hybrid Powertrain under Gray Relational Analysis Based on Fuzzy AHP and Entropy Weight Method

2020-04-14
2020-01-0430
Millions of configurations of power-split hybrid powertrain can be generated due to variation in number of planetary-gear sets (PG), difference in number, type and installation location of shift actuators (clutches or brakes), and difference in connection positions of power components. Considering the large number of configurations, complex structures and control modes, it is vital to construct an appropriate multi-index system evaluation method, which directly affects the requirement fulfillment, the time and cost of 2-PG system configuration design. Considering one-sidedness (dynamics and economic performance), simplicity (linear combination of indicators) and subjectivity (relying on expert experience) of previous system evaluation method of 2-PG system design, a more systematic evaluation method is proposed in this paper. The proposed evaluation system consists of five aspects, involving dynamic, economy, comfort, reliability and cost, and more than 20 indexes.
X