Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Hydrous Ethanol Combined with EGR on Performance of GDI Engine

2020-04-14
2020-01-0348
In recent years, particulate matters (PM) emissions from gasoline direct injection (GDI) engines have been gradually paid attention to, and the hydrous ethanol has a high oxygen content and a fast burning rate, which can effectively improve the combustion environment. In addition, Exhaust gas recirculation (EGR) can effectively reduce engine NOx emissions, and combining EGR technology with GDI engines is becoming a new research direction. In this study, the effects of hydrous ethanol gasoline blends on the combustion and emission characteristics of GDI engines are analyzed through bench test. The results show that the increase of the proportion of hydrous ethanol can accelerate the burning rate, shorten the combustion duration by 7°crank angle (CA), advance the peak moment of in-cylinder pressure and rate of heat release (RoHR) and improve the combustion efficiency. The hydrous ethanol gasoline blends can effectively improve the gaseous and PM emissions of the GDI engine.
Technical Paper

Experimental Study on Thermal Management Strategy of the Exhaust Gas of a Heavy-Duty Diesel Engine Based on In-Cylinder Injection Parameters

2020-04-14
2020-01-0621
The aftertreatment system is indispensable for the removal of the noxious pollutants emitted by diesel engines, whose efficiency depends largely on the exhaust gas temperature. Therefore, this study proposes a thermal management strategy including post injection, intake throttling and late post injection to improve the efficiency of the aftertreatment system for a heavy-duty diesel engine. In the experiments, the effects of main injection, post injection, injection pressure and throttle opening on the exhaust gas temperature at diesel oxidation catalyst (DOC) inlet were studied, with the influence of late post injection on the exhaust gas temperature at DOC outlet also investigated. The results showed that the reasonable control of throttle opening and post injection (such as the adjustment of injection timing and injection quantity) can significantly improve the average temperature at DOC inlet from 237.8°C to 333.6°C in the WHTC, with an increase of 40.3%.
X