Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Experimental Analysis of Control Strategies on Air Supply System for Proton Exchange Membrane Fuel Cells

2022-11-16
2022-01-5096
Proton exchange membrane fuel cells (PEMFC) are considered an environment-friendly alternative vehicle power in the future owing to their high power density and zero-carbon emission. To research the performance of the air supplied by the PEMFC air system, the PEMFC air system bench composed of an air compressor, cooler, emulated stack, back-pressure valve, and sensors was built. Then, a PEMFC system test bench composed of a hydrogen supply subsystem, stack, air supply subsystem, electronic control subsystem, and cooling subsystem was established. The fuel cell system control parameters and control method are complex due to the coupling and nonlinearity of the air supply system. The strategy composed of a feedforward table and piecewise proportional integral (PI) feedback control strategy was employed to regulate the pressure and flow rate of the air supply system.
Technical Paper

Control Strategies for Prevention of PEMFC Oxygen Starvation: A Review

2021-04-06
2021-01-0743
Proton Exchange Membrane Fuel Cell (PEMFC) which has advantages of starting fast, high energy density, high efficiency, lower operating temperature and little pollution is widely regarded as one of the most promising energy sources. The PEMFC system includes several subsystems such as air supply subsystem, hydrogen supply subsystem, thermal management subsystem, water management subsystem, energy management subsystem and so on. The Air supply subsystem has great influence on the performance and life of PEMFC stack. Whether oxygen supply in air supply subsystem is sufficient or not will affects reaction rate of fuel, the operating temperature and degradation of PEMFC stack and so on. To solve the issue of oxygen starvation in PEMFC stack, the control strategies for improving dynamic response and preventing air shortage of the PEMFC air supply subsystem are reviewed.
Technical Paper

Experimental Investigation of Control Strategies on Voltage Inconsistency for Proton Exchange Membrane Fuel Cells

2021-04-06
2021-01-0736
Proton exchange membrane fuel cells (PEMFC) is considered the most promising alternative vehicle power in the future owing to its highly power density and zero carbon emission. However, Voltage inconsistency of PEMFC is an essential issue that influences the performance of a PEMFC. It is affected by flow-rate and relative humidity of the inlet air. It’s necessary to establish a control strategy to ensure air supplied timely. A PEMFC system bench with 30 cells (the cells are numbered 1-30 in the direction from near to far from the air intake port) assembled in series was established to investigate the control strategy of air supply system. According to fuel cell’s position of the lowest voltage and the corresponding air flow rate, there are three different operations as follows. When it appears not in the low numbered area and the air flow rate is high, it indicates that humidity of the cell is insufficient and it needs to reduce power of the blower or close the bypass-valve.
Technical Paper

Investigating the Effect of Water and Oxygen Distributions on Consistency of Current Density Using a Quasi-Three-Dimensional Model of a PEM Fuel Cell

2021-04-06
2021-01-0737
Activation loss, mass transfer loss and ohmic loss are the three main voltage losses of the polymer electrolyte membrane fuel cell. While the former two types are relevant to concentration of oxygen in catalyst layer and the later one is associated with the water content in membrane. Distributions of water content and oxygen in a single cell are inconsistent which cause that current densities in each segment of the single cell are different. For the dry inlet gas, the water in the segments near the gas inlet channel will be carried to the segments near the gas outlet channel, which causes high ohmic loss of the segments near the gas inlet channel. In this work, a transfer non-isothermal quasi-three-dimensional model is developed to investigate inconsistency of current densities.
X