Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 11 of 11
2015-04-14
Technical Paper
2015-01-0804
Jinli Wang, Fuyuan Yang, Minggao Ouyang
Abstract Experimental research were carried out on a compression ignition engine with compression ratio of 17.5 with direct-run Naphtha. Exhaust recirculation ratio sweeps were carried out with three injection strategies. Premixed charge compression ignition, partially premixed combustion and low temperature combustion modes were realized and compared with each other. The first injection strategy is single injection. The injection timing is scanned to form partially premixed combustion and low temperature combustion. The second injection strategy features a large early first injection with fixed timing to form premixed charge and a small second injection near top dead center, which was scanned. The third injection strategy is similar to the traditional diesel injection strategy, which has a small pilot injection with fixed interval before the main injection. Results show that all injection strategies could realize both low NOx and low particulate matter emissions simultaneously.
2015-04-14
Journal Article
2015-01-0810
Hao-ye Liu, Zhi Wang, Jian-Xin Wang
Abstract Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from Initial Boiling Point (IBP) of gasoline to Final Boiling Point (FBP) of diesel. Polyoxymethylene Dimethyl Ethers (PODEn) have high oxygen content and cetane number, are promising green additive to diesel fuel. In this paper, WDF was prepared by blending diesel and gasoline at ratio of 1:1, by volume; the mass distribution of oligomers in the PODE3-4 product was 88.9% of PODE3 and 8.46% of PODE4. Diesel fuel (Diesel), WDF (G50D50) and WDF (80%)-PODE3-4 (20%) (G40D40P20) were tested in a light-duty single-cylinder diesel engine, combustion characteristic, fuel consumption and exhaust emissions were measured. The results showed that: at idling condition, G40D40P20 has better combustion stability, higher heat release rate, higher thermal efficiency compared with G50D50.
2015-04-14
Technical Paper
2015-01-0833
Buyu Wang, Zhi Wang, Shi-Jin Shuai, Jian-Xin Wang
Abstract A study of Multiple Premixed Compression Ignition (MPCI) with mixtures of gasoline and diesel is performed on a light-duty single cylinder diesel engine. The engine is operated at a speed of 1600rpm with the same fuel mass per cycle. By keeping the same intake pressure and EGR ratio, the influence of different blending ratios in gasoline and diesel mixtures (90vol%, 80vol% and 70vol% gasoline) is investigated. Combustion and emission characteristics are compared by sweeping the first (−95 ∼ −35deg ATDC) and the second injection timing (−1 ∼ 9deg ATDC) with an injection split ratio of 80/20 and an injection pressure of 80MPa. The results show that compared with diesel combustion, the gasoline and diesel mixtures can reduce NOx and soot emissions simultaneously while maintaining or achieving even higher indicated thermal efficiency, but the HC and CO emissions are high for the mixtures.
2014-04-01
Technical Paper
2014-01-1405
Yanfei Li, Hengjie Guo, Xiao Ma, Jian-Xin Wang, Hongming Xu
Abstract The near-field diesel spray process in diesel engines is the intermediate one that connects the in-nozzle flow with far field spray process and high-speed imaging techniques with high-quality temporal and spatial resolution are required in order to record this short process (< 300 μs). In this study, a high-speed charge-coupled-device (CCD) camera with the speed of up to 1,000,000 fps was used to study the near-field spray process for a diesel injector with different nozzle diameters. The tests were carried out in a constant volume vessel over a range of injection pressure and ambient pressure in non-evaporating conditions. The observed zone of the spray was where penetration length is less than 18 mm. The development of spray penetration length against time after start of injection (ASOI) was used to evaluate the spray process. The significant difference on spray penetration length development is found when the nozzle diameter varied.
2013-04-08
Technical Paper
2013-01-1666
Dingwei Gao, Chao Yu, Wenbin Yu, Jianxin Wang, Zhi Wang, Jichun Liu, Zhiqiang Kang, Wei Guo
Gasoline engines suffer low thermal efficiency and diesel engines have the emission problem of the trade-off between NOx and soot emissions. Homogeneous Charge Induced Ignition (HCII) is introduced using a port injection of gasoline to form a homogeneous charge and using a direct injection of diesel fuel to ignite. HCII has the potential to achieve high thermal efficiency and low emission combustion. However, HCII combustion mode still has problems of high THC emissions at low load and high pressure rise rate at high load. In order to improve the gasoline reactivity and reduce THC emissions, double injection of diesel was applied in HCII mode. In order to reduce peak pressure rise rate (PPRR), a two-staged high-temperature heat release is achieved at suitable engine condition. The effects of HCII mode on combustion and emission characteristics are studied in a light-duty engine.
2013-04-08
Technical Paper
2013-01-1652
Martin Wissink, Zhi Wang, Derek Splitter, Arsham Shahlari, Rolf D. Reitz
This study uses Fourier analysis to investigate the relationship between the heat release event and the frequency composition of pressure oscillations in a variety of combustion modes. While kinetically-controlled combustion strategies such as HCCI and RCCI offer advantages over CDC in terms of efficiency and NOX emissions, their operational range is limited by audible knock and the possibility of engine damage stemming from high pressure rise rates and oscillations. Several criteria such as peak pressure rise rate, ringing intensity, and various knock indices have been developed to quantify these effects, but they fail to capture all of the dynamics required to form direct comparisons between different engines or combustion strategies. Experiments were performed with RCCI, HCCI, and CDC on a 2.44 L heavy-duty engine at 1300 RPM, generating a significant diversity of heat release profiles.
2010-04-12
Technical Paper
2010-01-0901
Sifa Zheng, Peng Hao, Heng Xia, Xiaomin Lian, Keqiang Li
The effective matching of the exhaust mufflers and engines is an important measure to reduce the noise emission of running vehicles. Currently, the matching is based mainly on the steady state performance of engine. The muffler's influence on a vehicle's noise emission and sound quality under different running conditions is not generally considered. A comprehensive performance evaluation method is proposed to describe the muffler's influence on a commercial vehicle's noise emission, sound quality and exhaust back pressure under multiple working conditions. The weighted insertion loss and linearity coefficient were defined based on the test data of the exhaust noise under different engine loads and speeds. A comprehensive performance evaluation method was defined from the test data analysis of engine exhaust noise with different mufflers. Finally, the simulation results of the exhaust noise of a vehicle with different mufflers were compared with test data.
2012-04-16
Technical Paper
2012-01-0382
Hong-Qiang Yang, Shi-Jin Shuai, Zhi Wang, Jian-Xin Wang
A new combustion mode namely multiple premixed compression ignition (MPCI) for gasoline engines was proposed. The MPCI mode can be realized by two or more times gasoline injections into cylinder with a high pressure around the compression TDC and featured with a premixed combustion after each injection in the cylinder, which is different from the existed gasoline direct injection compression ignition (GDICI) modes such as homogeneous charge compression ignition (HCCI) mode with gasoline injection occurred in intake stroke, and partially premixed compression ignition (PPCI) mode with multiple gasoline injections in intake and compression strokes before the start of combustion (SOC). Therefore the spray and combustion of the MPCI mode are alternatively occurred as "spray-combustion-spray-combustion" near the TDC, rather than "spray-spray-combustion" sequence as traditional PPCI gasoline engines.
2012-04-16
Technical Paper
2012-01-1138
Fan Zhang, Hongming Xu, Soheil Zeraati Rezaei, Gautam Kalghatgi, Shi-Jin Shuai
In this paper blends of diesel and gasoline (dieseline) fuelled Partially Premixed Compression Ignition (PPCI) combustion and the comparison to conventional diesel combustion is investigated. The tests are carried out using a light duty four cylinder Euro IV diesel engine. The engine condition is maintained at 1800 rpm, 52 Nm (equivalent IMEP around 4.3 bar). Different injection timings and different amounts of EGR are used to achieve the PPCI combustion. The results show that compared to the conventional diesel combustion, the smoke and NOx emissions can be reduced by more than 95% simultaneously with dieseline fuelled PPCI combustion. The particle number total concentration can be reduced by 90% as well as the mean diameter (from 54 nm for conventional diesel to 16 nm for G50 fuelled PPCI). The penalty is a slightly increased noise level and lower indicated efficiency, which is decreased from 40% to 38.5%.
2013-10-14
Technical Paper
2013-01-2631
Buyu Wang, Hong-Qiang Yang, Shi-Jin Shuai, Zhi Wang, Xin He, Hongming Xu, Jianxin Wang
Two premixed compression ignition modes for low octane gasoline are numerically investigated. The multiple premixed compression ignition (MPCI) mode is featured with a sequence of “spray- combustion- spray- combustion”, while the partially premixed compression ignition (PPCI) mode is a sequence of “spray- spray- combustion”. This paper compares the combustion process of the two modes using multi-dimensional CFD code, KIVA-3v, which can perform chemical reaction calculations for different fuels by a discrete multiple component (DMC) method. The fuel used for simulation consists of 58.5% i-C8H18 and 41.5% n-C7H16 in volume, and has the same RON and similar physical properties to straight-run naphtha used in the experiment. The engine operating condition is fixed at a 1600rpm and 0.7 MPa IMEP. The injection strategies for these two modes are different. All of the parameters in the simulation come from the single cylinder engine experiments.
2015-04-14
Technical Paper
2015-01-1249
Jinli Wang, Fuyuan Yang, Minggao Ouyang
Abstract There is increasing demand for engine diagnostic and control with in-cylinder pressure signal. However, the application of cylinder pressure sensors are restricted by the high cost of the sensor. Another possible way for engine combustion state estimation is by processing of instantaneous crankshaft speed signal, but it is limited by the precision and complexity of the algorithm. It could be a solution by processing one cylinder pressure signal in combination with a crankshaft speed signal. The indicated torque could be estimated through engine speed processing and also from the measure cylinder pressure for the reference cylinder. Measurement results from experiments show that the indicated torque error traces of different cylinder are similar in shape. According to this assumption, the reference cylinder with cylinder pressure signal available can serve as both a parameter calibration information source and an error reduction measure.
Viewing 1 to 11 of 11