Refine Your Search

Topic

Search Results

Journal Article

Mechanical Behavior of Lithium-Ion Battery Component Materials and Error Sources Analysis for Test Results

2016-04-05
2016-01-0400
As mechanical damage induced thermal runaway of lithium-ion batteries has become one of the research hotspots, it is quite crucial to understand the mechanical behavior of component materials of lithium battery. This study focuses on the mechanical performance of separators and electrodes under different loading conditions and the error sources analysis for test results. Uniaxial tensile tests were conducted under both quasi-static and dynamic loading conditions. The strain was acquired through the combination of high speed camera and digital image correlation (DIC) method while the force was obtained with a customized load cell. Noticeable anisotropy and strain rate effect were observed for separators. The fracture mode of separators is highly correlated to the microscopic fiber orientation. To demonstrate the correlation microscopic images of separator material were obtained through SEM to match the facture edges of tensile tests at different loading directions.
Journal Article

Characterization of Metal Foil in Anisotropic Fracture Behavior with Dynamic Tests

2018-04-03
2018-01-0108
Metal foil is a widely used material in the automobile industry, which not only is the honeycomb barrier material but is also used as current collectors in Li-ion batteries. Plenty of studies proved that the mechanical property of the metal foil is quite different from that of the metal sheet because of the size effect on microscopic scale, as the metal foil shows a larger fracture stress and a lower ductility than the metal sheet. Meanwhile, the fracture behavior and accurate constitutive model of the metal foil with the consideration of the strain rate effect are widely concerned in further studies of battery safety and the honeycomb. This article conducted experiments on 8011H18 aluminum foil, aiming to explore the quasi-static and dynamic tension testing method and the anisotropic mechanical behavior of the very thin foil. Two metal foil dog-bone specimens and three types of notched specimens were tested with a strain rate ranging from 2 × 10−4/s to 40/s and various stress states.
Technical Paper

Effect of Oil Viscosity and Driving Mode on Oil Dilution and Transient Emissions Including Particle Number in Plug-In Hybrid Electric Vehicle

2020-04-14
2020-01-0362
Plug-in electric vehicle (PHEV) has a promising prospect to reduce greenhouse gas (GHG) emission and optimize engine operating in high-efficiency region. According to the maximum electric power and all-electric range, PHEVs are divided into two categories, including “all-electric PHEV” and “blended PHEV” and the latter provides a potential for more rational energy distribution because engine participates in vehicle driving during aggressive acceleration not just by motor. However, the frequent use of engine may result in severe emissions especially in low state of charge (SOC) and ahead of catalyst light-off. This study quantitatively investigates the impact of oil viscosity and driving mode (hybrid/conventional) on oil dilution and emissions including particle number (PN).
Journal Article

Cold and Warm Start Characteristics using HVO and RME Blends in a V6 Diesel Engine

2013-04-08
2013-01-1306
The first several cycles determine the quality of an engine start. Low temperatures and air/fuel ratio cause incomplete combustion of the fuel. This can lead to dramatic increases in HC and PM emissions. In order to meet Euro V legislation requirements which have stricter cold start emission levels, it is critical to study the characteristics of cold and warm starting of engines in order to develop an optimized operation. The NO and THC emissions were measured by fast CLD and Fast FID gas analyzers respectively and PM in both nucleation and accumulation modes were measured by DMS500. The coolant temperature was controlled in order to guarantee the experiment repeatability. The results show that at cold start using RME60 produced higher NO and lower THC than the other tested fuels while combustion of HVO60 produced a similar level of NO but lower THC compared with mineral diesel. Meanwhile, the nucleation mode of mineral diesel was similar to RME60 but higher than HVO60.
Journal Article

Energy Harvesting in Tire: State-of-the-Art and Challenges

2018-04-03
2018-01-1119
Although energy harvesting systems are extensively used in different fields, studies on the application of energy harvesters embedded in tires for vehicle control are rare and mostly focus on solving power supply problems of tire pressure sensors. Sensors are traditionally powered by an embedded battery, which must be replaced periodically because of its limited energy storage. Heightened interest in vehicle safety is expected to drive increased design and manufacture of in-tire sensors, which in turn, translates to rising demand for power generation in tires. These challenges emphasize the need to investigate the substitution of batteries and in-tire energy harvesting systems. Current in-tire energy harvesting methods involve piezoelectric, electromagnetic, and electrostatic power generation, whose energy sources include tire vibrations, deformations, and rotations. Piezoelectric harvesters are generally compact but operate for short durations.
Technical Paper

Control System Development for the Diesel APU in Off-Road Hybrid Electric Vehicle

2007-10-30
2007-01-4209
This paper developed a control system for the auxiliary power unit (APU) in off-road series hybrid electric special vehicle. A control system configuration was designed according to the requirements of the high voltage system in series hybrid electric special vehicle. Then optimal engine operating areas were defined. A gain scheduling engine speed PI controller was designed based on these areas. A closed loop voltage regulator was designed for the synchronous generator. The proposed control system was first validated on an APU control test bench. The test results showed the control system guaranteed the diesel APU good dynamic response characteristics while remaining stable output voltage. Finally, the APU control system was implemented on a diesel APU in an off-road series hybrid electric vehicle and a road test was conducted. The road test results showed the APU control system promised good performance in both vehicle dynamics and vehicle high voltage system.
Technical Paper

Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

2008-06-23
2008-01-1723
In this paper, a hybrid combustion mode in four-stroke gasoline direct injection engines was studied. Switching cam profiles and injection strategies simultaneously was adopted to obtain a rapid and smooth switch between SI mode and HCCI mode. Based on the continuous pressure traces and corresponding emissions, HCCI steady operation, HCCI transient process (combustion phase adjustment, SI-HCCI, HCCI-SI, HCCI cold start) were studied. In HCCI mode, HCCI combustion phase can be adjusted rapidly by changing the split injection ratio. The HCCI control strategies had been demonstrated in a Chery GDI2.0 engine. The HCCI engine simulation results show that, oxygen and active radicals are stored due to negative valve overlap and split fuel injection under learn burn condition. This reduces the HCCI sensitivity on inlet boundary conditions, such as intake charge and intake temperature. The engine can be run from 1500rpm to 4000rpm in HCCI mode without spark ignition.
Technical Paper

Potential Fuel Consumption Improvement Analysis for Integrated Starter Generator System Base on the New European Drive-cycle

2008-06-23
2008-01-1570
A conventional vehicle with gasoline engine was tested on a chassis dynamometer over the new European drive-cycle (NEDC). The distributions of the engine speed and power, the throttle positions during the drive cycle are analyzed. Engine idling, acceleration and deceleration take an important proportion in the drive cycle. If engine idling is instead by engine stop, the fuel consumption will be improved by 2.27%. In an Integrated Starter Generator (ISG) system, with the assist of the starter/generator, transient operation of the engine will decrease, which reduces fuel consumption by 6%. Fuel economy will be also improved by braking regeneration and restricting operating points to an optimized region, the details are not discussed in this paper. To reduce fuel consumption further, the region where engine usually runs in urban traffic, should be paid more attention to while engine calibration.
Technical Paper

Effects of Human Adaptation and Trust on Shared Control for Driver-Automation Cooperative Driving

2017-09-23
2017-01-1987
Vehicle automation is a fundamental approach to reduce traffic accidents and driver workload. However, there is a notable risk of pushing human drivers out of the control loop before automation technology fully matures. Cooperative driving (or vehicle co-piloting) is a novel paradigm which is defined as the vehicle being jointly navigated by a human driver and an automatic controller through shared control technology. Indirect shared control is an emerging shared control method, which is able to realize cooperative driving through input complementation instead of haptic guidance. In this paper we first establish an indirect shared control method, in which the driver’s commanded input and the controller’s desired input are balanced with a weighted summation. Thereafter, we propose a predictive model to capture driver adaptation and trust in indirect shared control.
Technical Paper

Simulations on Special Structure ISG Motor Used for Hybrid Electrical Vehicles Aimed at Active Damping

2017-03-28
2017-01-1123
Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
Technical Paper

Recycling-Based Reduction of Energy Consumption and Carbon Emission of China’s Electric Vehicles: Overview and Policy Analysis

2018-04-03
2018-01-0659
Electric vehicles maintain the fastest development in China and undertake the responsibility of optimizing energy consumption and carbon emission in the transportation field. However, from the entire life cycle point of view, although electric vehicles have a certain degree of energy consumption and carbon emission reduction in the use phase, they cause extra energy consumption and carbon emission in the manufacturing phase, which weakens the due environmental benefits to some extent. The recycling of electric vehicles can effectively address the issue and indirectly reduce the energy consumption and carbon emission in the manufacturing phase. China is setting up the recycling system and strengthening regulation force to achieve proper energy consumption and carbon emission reduction benefits of electric vehicles. Under the current electric vehicle recycling technologies, China can reduce about 34% of carbon emission in electric vehicle manufacturing phase.
Journal Article

An Efficient Path Planning Methodology Based on the Starting Region Selection

2020-04-14
2020-01-0118
Automated parking is an efficient way to solve parking difficulties and path planning is of great concern for parking maneuvers [1]. Meanwhile, the starting region of path planning greatly affects the parking process and efficiency. The present research of the starting region are mostly determined based on a single algorithm, which limits the flexibility and efficiency of planning feasible paths. This paper, taking parallel parking and vertical parking for example, proposes a method to calculate the starting region and select the most suitable path planning algorithm for parking, which can improve the parking efficiency and reduce the complexity. The collision situations of each path planning algorithm are analyzed under collision-free conditions based on parallel and vertical parking. The starting region for each algorithm can then be calculated under collision-free conditions.
Technical Paper

A Topological Map-Based Path Coordination Strategy for Autonomous Parking

2019-04-02
2019-01-0691
This paper proposed a path coordination strategy for autonomous parking based on independently designed parking lot topological map. The strategy merges two types of paths at the three stages of path planning, to determinate mode switching timing between low-speed automated driving and automated parking. Firstly, based on the principle that parking spaces should be parallel or vertical to a corresponding path, a topological parking lot map is designed by using the point cloud data collected by LiDAR sensor. This map is consist of road node coordinates, adjacent matrix and parking space information. Secondly, the direction and lateral distance of the parking space to the last node of global path are used to decide parking type and direction at parking planning stage. Finally, the parking space node is used to connect global path and parking path at path coordination stage.
Technical Paper

An Innovative Design of In-Tire Energy Harvester for the Power Supply of Tire Sensors

2018-04-03
2018-01-1115
With the development of intelligent vehicle and active vehicle safety systems, the demand of sensors is increasing, especially in-tire sensors. Tire parameters are essential for vehicle dynamic control, including tire pressure, tire temperature, slip angle, longitudinal force, etc.. The diversification and growth of in-tire sensors require adequate power supply. Traditionally, embedded batteries are used to power sensors in tire, however, they must be replaced periodically because of the limited energy storage. The power limitation of the batteries would reduce the real-time data transmission frequency and deteriorate the vehicle safety. Heightened interest focuses on generating power through energy harvesting systems in replace of the batteries. Current in-tire energy harvesting devices include piezoelectric, electromagnetic, electrostatic and electromechanical mechanism, whose energy sources include tire deformations, vibrations and rotations.
Technical Paper

Predicting the Battery Residual Usable Energy under Dynamic Conditions: a Novel Adaptive Method with Enhanced Performance

2015-03-10
2015-01-0054
Electric vehicle (EV) is a worldwide researching focus due to its environmental friendliness, but the inaccurate Remaining Driving Range (RDR) estimation hinders the EVs' popularity, and an accurate determination of the battery Residual Usable Energy (RUE) is the key factor to obtain a precise RDR value. A common RUE estimation method is based on State-of-Charge (SOC) estimation, in which the RUE is proportionally related to the current SOC. However, the battery voltage varies significantly under real-world conditions, and the traditional method results in certain estimation errors. An adaptive RUE prediction method (AEP) is introduced in this paper, in which the dynamic voltage is predicted based on the future discharge profile and a battery model, while the RUE is then calculated by the predicted voltage and current sequences.
Technical Paper

Research on Driving Range Estimation for Electric Vehicles Based on Corrected Battery Model

2015-04-14
2015-01-0250
In order to reduce driver's anxiety about range and energy, a direct and effective approach is to offer the remaining driving range based on the vehicle's states. Consequently, the estimation accuracy of the battery's remaining energy is very important. This paper introduces a experiment-based model for predicting the remaining energy, which considers many factors, such as current, temperature, difference between battery cells, and so on. This approach ensures the accuracy of the remaining driving range. Finally the method is validated through the environment space test. Validation results show that this method can offer exact remaining energy, which reduces the estimation error of the remaining range greatly.
Technical Paper

Fuel Cell Vehicles: An Opportunity for China's Greenhouse Gas Reduction

2019-12-19
2019-01-2263
Fuel cell vehicle and battery electric vehicle are two environmentally benign vehicle technology types possibly meeting the zero-emission regulations in the future. The premise is they can achieve parity with conventional vehicle both environmentally and economically. Besides, it is necessary to distinguish which technology is more suitable in China's current and future context. This paper compares their cost-effectiveness for reducing greenhouse gas emissions, examining the life-cycle greenhouse gas emissions of conventional gasoline vehicle, battery electric vehicle and fuel cell vehicle in China's energy context under three different scenarios. The results indicate that under the 500km drive range, fuel cell vehicles are less competitive than battery electric vehicles currently. Fuel cell vehicles generate much more greenhouse gas emissions than battery vehicles and conventional gasoline vehicles.
Technical Paper

Active Damping Control of Torsional Vibration in a Diesel Hybrid Powertrain

2019-12-19
2019-01-2342
This paper has designed a real time control algorithm to use ISG motor actively compensate the torque ripple produced by the engine, to reduce torsional vibration. This paper consists of 3 parts. In the first section, this paper has introduced the research object and its modification for experiments. Then the development of control strategy is presented. The engine dynamic model is built, and real-time control with a feedforward unit and a feedback unit is derived. Encoder and cylinder pressure is used for engine torque estimator. Then the ISG motor output the counter-waveform to make the overall output smooth. In order to verify the effectiveness of the control strategy, the final section has established a test bench, where two experiments are carried out. One of the experimental conditions is to set the engine at a constant operating point, while the other is to crank the engine from 0 rpm to idle speed with ISG motor.
Technical Paper

Full Protection Scheme and Energy Optimization Management of the Battery in Internal Combustion Engine Vehicles Based on Power Partitioning Model

2019-04-02
2019-01-1205
As the only energy storage component in the internal combustion engine vehicles (ICEVs), the battery is lack of comprehensive supervision and effective protection. Excessive discharge or aging cannot be detected and dealt with, which may lead to damage of the battery, even startup failure of the vehicle. In this paper, a full protection and optimization management scheme of the battery is proposed, to achieve comprehensive protection of the battery and energy optimization. Firstly, power partitioning model of the battery is established to reveal the battery characteristics in different states, which divides the battery into several function zones. Then, based on the power partitioning model, over discharge protection and graded overcurrent protection method are proposed, to achieve full protection of the battery. Thirdly, energy optimization management strategy based on generator’s multimode operation is introduced.
Technical Paper

Influence of Mass Distribution of Battery and Occupant on Crash Response of Small Lightweight Electric Vehicle

2015-04-14
2015-01-0575
Small lightweight electric vehicle (SLEV) is an approach for compensating low energy density of the current battery. However, small lightweight vehicle presents technical challenges to crash safety design. One issue is that mass of battery pack and occupants is a significant portion of vehicle's total weight, and therefore, the mass distribution has great influence on crash response. This paper presents a parametric analysis using finite element modeling. We first build LS-DYNA model of a two-seater SLEV with curb weight of 600 kg. The model has no complex components and can provide reasonable crash pulses under full frontal rigid barrier crash loading and offset deformable barrier (ODB) crash loading. For given mass of battery pack and one occupant (the driver), different battery layouts, representing different combinations of center of gravity and moment of inertia of the whole vehicle, are analyzed for their influences on the crash responses under the two frontal crash loadings.
X