Refine Your Search

Topic

Author

Search Results

Video

Toyota Plug-In Hybrid (PHV) Demonstration Program Results

2012-03-27
From 2009 until present Toyota has had a demonstration program of Prius PHV which is comprised of 600 vehicles throughout Japan, Europe and in the US. The vehicles were given to government agencies, corporations, utility companies and private individuals to use. With these demo units Toyota wanted to understand the market reaction and real world impact of plug-in technology on gasoline displacement with increased use of electricity as a fuel. This presentation shows that approximately 50% of fuel was saved using the PHVs in the US. An experiment in Toyota City shows that if public infrastructure is optimized to be convenient and located where people normally park, there is a potential to achieve an ideal fuel savings of 61%. The demonstration program shows that plug-in technology in fact saves fuel and that the proper infrastructure can optimize the fuel savings of plug-in hybrids. Presenter Avernethy Francisco, Toyota
Video

Some Aspects of Toyota PHEV Prius OBD

2012-02-01
Plug-in Hybrid Electric Vehicles (PHEVs) are entering the market and bring with them new OBD issues. A key one is how to measure in-use monitor performance ratio and where to set a standard for this, as PHEVs will have varying amounts of engine-on operation depending on customer plug-in and driving behavior. Toyota�s Prius PHEV system is described and customer use data from a US demonstration fleet is examined. Some prior denominator proposals by Toyota and CARB are explained, as background for the current CARB/industry agreement for denominator and ratio. Presenter Morton M. Smith, Toyota
Technical Paper

Real-world Evaluation of National Energy Efficiency Potential of Cold Storage Evaporator Technology in the Context of Engine Start-Stop Systems

2020-04-14
2020-01-1252
National concerns over energy consumption and emissions from the transportation sector have prompted regulatory agencies to implement aggressive fuel economy targets for light-duty vehicles through the U.S. National Highway Traffic Safety Administration/Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) program. Automotive manufacturers have responded by bringing competitive technologies to market that maximize efficiency while meeting or exceeding consumer performance and comfort expectations. In a collaborative effort among Toyota Motor Corporation, Argonne National Laboratory (ANL), and the National Renewable Energy Laboratory (NREL), the real-world savings of one such technology is evaluated. A commercially available Toyota Highlander equipped with two-phase cold storage technology was tested at ANL’s chassis dynamometer testing facility.
Journal Article

The Measured Impact of Vehicle Mass on Road Load Forces and Energy Consumption for a BEV, HEV, and ICE Vehicle

2013-04-08
2013-01-1457
The U.S. Department of Energy's Office of Energy Efficiency & Renewable Energy initiated a study that conducted coastdown testing and chassis dynamometer testing of three vehicles, each at multiple test weights, in an effort to determine the impact of a vehicle's mass on road load force and energy consumption. The testing and analysis also investigated the sensitivity of the vehicle's powertrain architecture (i.e., conventional internal combustion powertrain, hybrid electric, or all-electric) on the magnitude of the impact of vehicle mass. The three vehicles used in testing are a 2012 Ford Fusion V6, a 2012 Ford Fusion Hybrid, and a 2011 Nissan Leaf. Testing included coastdown testing on a test track to determine the drag forces and road load at each test weight for each vehicle. Many quality measures were used to ensure only mass variations impact the road load measurements.
Technical Paper

Diethyl Ether (DEE) as a Renewable Diesel Fuel

1997-10-01
972978
Producing and using renewable fuels for transportation is one approach for a sustainable energy future for the United States, as well as the rest of the world. Renewable fuels may also substantially reduce contributions to global climate change. In the transportation sector, ethanol produced from biomass shows promise as a future fuel for spark-ignited engines because of its high octane quality. Ethanol, however, is not a high-quality compression-ignition fuel. Ethanol can be easily converted through a dehydration process to produce diethyl ether (DEE), which is an excellent compression-ignition fuel with higher energy density than ethanol. DEE has long been known as a cold-start aid for engines, but little is known about using DEE as a significant component in a blend or as a complete replacement for diesel fuel.
Technical Paper

Developing Safety Standards for FCVs and Hydrogen Vehicles

2007-04-16
2007-01-0436
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 7 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to the FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline IC-powered vehicles. The document is currently being updated to clarify and update requirements so that the document will continue to be relevant and useful in the future. In addition to developing draft revisions to SAE J2578, the working group has updated SAE J1766 and is developing a new recommended practice on vehicular hydrogen systems (SAE J2579). The documents are written from the standpoint of systems-level, performance-based requirements. A risk-based approach was used to identify potential electrical and fuel system hazards and provide criteria for acceptance.
Technical Paper

The Impact of Fuel Composition on the Combustion and Emissions of a Prototype Lean-Boosted PFI Engine

2010-10-25
2010-01-2094
Toyota and BP have performed a collaborative study to understand the impact of fuel composition on the combustion and emissions of a prototype 1.8L lean boosted engine. The fuel matrix was designed to understand better the impact of a range of fuel properties on fundamental combustion characteristics including thermal efficiency, combustion duration, exhaust emissions and extension of lean limit. Most of the fuels in the test matrix were in the RON range of 96 - 102, although ethanol and other high octane components were used in some fuels to increase RON to the range 104 - 108. The oxygen content ranged from 2 - 28%, and constituents included biocomponents, combustion improving additives and novel blend components. Performance and emissions tests were conducted over a range of engine operating conditions. Thermal efficiency was mapped at stoichiometric and lean conditions, and the limit of lean combustion was established for different fuels.
Technical Paper

Predicting the Fuel Economy Impact of “Cold-Start” for Reformed Gasoline Fuel Cell Vehicles

2003-06-23
2003-01-2253
Hydrogen fuel cell vehicles (FCVs) appear to be a promising solution for the future of clean and efficient personal transportation. Issues of how to generate the hydrogen and then store it on-board to provide satisfactory driving range must still be resolved before they can compete with conventional vehicles. Alternatively, FCVs could obtain hydrogen from on-board reforming of gasoline or other fuels such as methanol or ethanol. On-board reformers convert fuel into a hydrogen-rich fuel stream through catalytic reactions in several stages. The high temperatures associated with fuel processing present an engineering challenge to warm up the reformer quickly and efficiently in a vehicle environment. Without a special warmup phase or vehicle hybridization, the reformer and fuel cell system must provide all power to move the vehicle, including ¼ power in 30 s, and ½ power in 3 min to satisfy the Federal Test Procedure (FTP) cycle demands.
Technical Paper

The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview

2001-05-14
2001-01-2068
This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.
Technical Paper

The DOE/NREL Environmental Science Program

2001-05-14
2001-01-2069
This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.
Technical Paper

Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

2001-05-14
2001-01-2061
The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given.
Technical Paper

Exhaust Aftertreatment Research for Heavy Vehicles

2001-05-14
2001-01-2064
The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 emission regulations for light-duty vehicles will require effective exhaust emission controls (aftertreatment) for diesels in these applications. Diesel-powered heavy trucks face a similar situation for the 2007 regulations announced by EPA in December 2000. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and evaluation of prototype devices. This paper provides an overview of these R&D efforts, with examples of key findings and developments.
Technical Paper

Electric and Hybrid Vehicle Testing

2002-06-03
2002-01-1916
Today's advanced-technology vehicles (ATVs) feature hybrid-electric engines, regenerative braking, advanced electric drive motors and batteries, and eventually fuel cell engines. There is considerable environmental and regulatory pressure on fleets to adopt these vehicles, resulting in high-risk purchase decisions on vehicles that do not have documented performance histories. The Department of Energy's Field Operations Program tests ATVs and disseminates the results to provide accurate and unbiased information on vehicle performance (http://ev.inel.gov/fop). Enhancing the fleet manager's knowledge base increases the likelihood that ATVs will be successfully and optimally placed into fleet missions. The ATVs are tested using one or more methods - Baseline Performance, Accelerated Reliability, and Fleet Testing. The Program and its 10 testing partners have tested over three-dozen electric and hybrid electric vehicle models, accumulating over 4 million miles of testing experience.
Technical Paper

US National Laboratory R&D Programs in Support of Electric and Hybrid Electric Vehicle Batteries

2002-06-03
2002-01-1948
The successful commercialization of Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) can provide significant benefits by reducing the United States' growing dependence on petroleum fuels for transportation; decreasing polluting and greenhouse gas emissions; and facilitating a long-term transition to sustainable renewable energy sources. Recognizing these benefits, the U.S. Department of Energy (DOE) supports an active program of long-range R&D to develop electric vehicle (EV) and hybrid electric vehicle (HEV) technologies and to accelerate their commercialization. The DOE Office of Advanced Automotive Technologies (OAAT) supports several innovative R&D programs, conducted in partnership with DOE's national laboratories, industry, other government agencies, universities, and small businesses. The Office has two key R&D cooperative agreements with the U.S. Advanced Battery Consortium (USABC) to develop high-energy batteries for EVs and high-power batteries for HEVs.
Technical Paper

Platinum: Too Precious for Fuel Cell Vehicles?

2002-06-03
2002-01-1896
One of the biggest barriers to commercialization of fuel cell vehicles is the high cost of materials and manufacturing of fuel cell components. Precious metal materials in the membrane electrode assemblies (MEAs) account for more than 17 percent of the total cost of polymer electrolyte membrane (PEM) fuel cell systems. Precious metals such as platinum may also be required for fuel processing catalysts. The Department of Energy (DOE) is addressing the important issue of the cost of fuel cell components by supporting R&D projects aimed at improving the performance of fuel cells which would lead to reduced platinum loading, as well as developing low-cost automated industrial processes for the manufacture of electrodes and MEAs. Other projects include development of a supply-demand elasticity model. The long term reserves and availability of platinum is a serious issue facing the commercial viability of fuel cell vehicles.
Technical Paper

What FutureCar MPG Levels and Technology Will be Necessary?

2002-06-03
2002-01-1899
The potential peaking of world conventional oil production and the possible imperative to reduce carbon emissions will put great pressure on vehicle manufacturers to produce more efficient vehicles, on vehicle buyers to seek them out in the marketplace, and on energy suppliers to develop new fuels and delivery systems. Four cases for stabilizing or reducing light vehicle fuel use, oil use, and/or carbon emissions over the next 50 years are presented. Case 1 - Improve mpg so that the fuel use in 2020 is stabilized for the next 30 years. Case 2 - Improve mpg so that by 2030 the fuel use is reduced to the 2000 level and is reduced further in subsequent years. Case 3 - Case 1 plus 50% ethanol use and 50% low-carbon fuel cell vehicles by 2050. Case 4 - Case 2 plus 50% ethanol use and 50% low-carbon fuel cell vehicles by 2050. The mpg targets for new cars and light trucks require that significant advances be made in developing cost-effective and very efficient vehicle technologies.
Technical Paper

Rapid Boundary Detection for Model Based Diesel Engine Calibration

2011-04-12
2011-01-0741
In recent years, engine control systems have become more and more complex because of the growing pressure to develop technical innovations due to social pressures such as global warming and the depletion of fossil fuels. On the other hand, products must be launched on the market in a timely manner and at low cost. For these reasons, calibration processes have become more sophisticated. It is possible to improve the efficiency of calibration by making good use of models, and a calibration process that incorporates models is called model based calibration (MBC). MBC is a valid means of reducing the number of measurement points to some extent by statistical engine modeling and design of experiment (DoE) methodology which places measurement points in order to maximize modeling accuracy. However, it is still necessary to spend much time carrying out boundary detection testing before DoE.
Technical Paper

Development of a S-FLOW System and Control (S‑FLOW: Energy Saving Air Flow Control System)

2013-04-08
2013-01-1499
This paper focuses on the development of the centralized air flow system S-FLOW (Energy Saving Air Flow Control System). The S-FLOW system directs thermal energy to each seating position in the vehicle based on occupancy, thus prioritizing the energy usage based on the particular scenario. The thermal environment in a vehicle's cabin is non-uniform. If the climate control system is used to direct airflow exclusively to any one region of the cabin, without special considerations, comfort may be adversely impacted. To solve this concern, a non-uniform evaluation method was developed to evaluate comfort at each body region of the occupant using the SET* (Standard new effective temperature) method. SET* is a parameter that combines the effects of temperature, airflow velocity, humidity, and other parameters to quantify thermal comfort. Next, a method was established that correlated each body region's SET* value to the occupant's overall thermal comfort.
Technical Paper

The Role of Alternative Fuels in the New Generation of Vehicles

1995-10-01
952379
The Partnership for a New Generation of Vehicles (PNGV) is linking the research efforts of a broad spectrum of U.S. Federal agencies and laboratories with those of the domestic auto manufacturers in pursuit of three specific, interrelated goals: 1) reduce manufacturing production costs and product development times for all car and truck production; 2) pursue advanced technologies for near-term vehicle improvements that increase fuel efficiency and reduce emissions of standard vehicles; and 3) within the next decade, develop a new class of vehicle that will achieve up to three times the fuel efficiency of today's comparable vehicle, and, at the same time, cost no more to own and drive than today's automobile, maintain performance, size, and utility of comparable vehicles, and meet or exceed safety and emission requirements.
Technical Paper

Development of Aluminum-Clad Material for Corrosion Resistance Cooler

2013-04-08
2013-01-0380
As greater emphasis is placed on the development of small fuel-efficient cars, there is a growing need to reduce the size of the inverter used in hybrid vehicles (HVs). However, semiconductor devices and other components are generating larger amounts of heat and the parts used to cool these components are becoming thinner. One issue resulting from these trends is perforations that propagate from coolant paths. This development secured corrosion resistance by controlling sacrificial corrosion protection performance, optimizing the use of Mn and Si materials to reduce susceptibility to grain-boundary corrosion, and taking a microstructural approach to the flow of the brazing filler metal. The developed material was applied to the inverter cooler of a small HV released at the end of 2011.
X