Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Microwave Enhanced Freeze Drying of Solid Waste

2007-07-09
2007-01-3266
A Microwave Enhanced Solid Waste Freeze Drying Prototype system has been developed for the treatment of solid waste materials generated during extended manned space missions. The system recovers water initially contained within wastes and stabilizes the residue with respect to microbial growth. Dry waste may then be safely stored or passed on to the next waste treatment process. Operating under vacuum, microwave power provides the energy necessary for sublimation of ice contained within the waste. This water vapor is subsequently collected as relatively pure ice on a Peltier thermoelectric condenser as it travels en route to the vacuum pump. In addition to stabilization via dehydration, microwave enhanced Freeze Drying reduces the microbial population (∼90%) in the waste.
Technical Paper

Microwave Powered Gravitationally Independent Medical Grade Water Generation

2007-07-09
2007-01-3176
The on-demand production of Medical Grade Water (MGW) is a critical biomedical requirement for future long-duration exploration missions. Potentially, large volumes of MGW may be needed to treat burn victims, with lesser amounts required to reconstitute pharmacological agents for medical preparations and biological experiments, and to formulate parenteral fluids during medical treatment. Storage of MGW is an untenable means to meet this requirement, as are nominal MGW production methods, which use a complex set of processes to remove chemical contaminants, inactivate all microorganisms, and eliminate endotoxins, a toxin originating from gram-negative bacteria cell walls. An innovative microgravity compatible alternative, using a microwave-based MGW generator, is described in this paper. The MGW generator efficiently couples microwaves to a single-phase flowing stream, resulting in super-autoclave temperatures.
Technical Paper

Development and Testing of a Microwave Powered Regenerable Air Purification Technology Demonstrator

2002-07-15
2002-01-2403
Dielectric heating via microwave irradiation of contaminant laden sorbents offers distinct advantages in comparison to conventional thermal regeneration techniques. High temperatures may be achieved very rapidly because electromagnetic energy is absorbed directly by the sorbent material. A Technology Demonstrator, incorporating efficient rectangular waveguide based sorbent cartridge designs and effective microwave transmission systems was designed, fabricated and tested. Importantly, the performance of the Molecular Sieve 13X Waveguide Cartridge for the removal of water vapor, the Molecular Sieve 5A Waveguide Cartridge for the removal of CO2, and the Activated Carbon Waveguide Cartridge for removal of volatile organics from air, were each validated by successive sorption/ microwave desorption cycles.
Technical Paper

Development and Testing of a Microwave Powered Solid Waste Stabilization and Water Recovery System

2006-07-17
2006-01-2182
A Microwave Powered Solid Waste Stabilization and Water Recovery Prototype system has been developed for the treatment of solid waste materials generated during extended manned space missions. The system recovers water initially contained within wastes and stabilizes the residue with respect to microbial growth. Dry waste may then be safely stored or passed on to the next waste treatment process. Using microwave power, water present in the solid waste is selectively and rapidly heated. Liquid phase water flashes to steam and superheats. Hot water and steam formed in the interior of waste particles create an environment that is lethal to bacteria, yeasts, molds, and viruses. Steam contacts exposed surfaces and provides an effective thermal kill of microbes, in a manner similar to that of an autoclave. Volatilized water vapor is recovered by condensation.
Technical Paper

On Demand Electrochemical Production of Reagents to Minimize Resupply of Expendables

1999-07-12
1999-01-2181
The electrosynthesis of expendable reagents including acids, bases, and oxidants from simple salts or salt mixtures has been demonstrated using a variety of electrochemical cells. A five chambered electrodialytic water splitting (EDWS) cell with bipolar membranes was utilized to efficiently convert sodium sulfate, sodium chloride, potassium nitrate, and potassium chloride to conjugate acids and bases. With the same cell, selective segregation of cations and anions from mixed salt solutions occurred, resulting in relatively pure acids and bases. These results suggest that pure acids and bases can be produced from composite spacecraft brines. Chemical oxidants such as sodium and ammonium persulfate were also synthesized with high current efficiencies by the electrooxidation of salts and acids in a two chambered electrochemical cell.
X