Refine Your Search

Topic

Search Results

Journal Article

Investigating Through Simulation the Mobility of Light Tracked Vehicles Operating on Discrete Granular Terrain

2013-04-08
2013-01-1191
This paper presents a computational framework for the physics-based simulation of light vehicles operating on discrete terrain. The focus is on characterizing through simulation the mobility of vehicles that weigh 1000 pounds or less, such as a reconnaissance robot. The terrain is considered to be deformable and is represented as a collection of bodies of spherical shape. The modeling stage relies on a novel formulation of the frictional contact problem that requires at each time step of the numerical simulation the solution of an optimization problem. The proposed computational framework, when run on ubiquitous Graphics Processing Unit (GPU) cards, allows the simulation of systems in which the terrain is represented by more than 0.5 million bodies leading to problems with more than one million degrees of freedom.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

Influence of Injection Duration and Ambient Temperature on the Ignition Delay in a 2.34L Optical Diesel Engine

2015-09-01
2015-01-1830
Non-conventional operating conditions and fuels in diesel engines can produce longer ignition delays compared to conventional diesel combustion. If those extended delays are longer than the injection duration, the ignition and combustion progress can be significantly influenced by the transient following the end of injection (EOI), and especially by the modification of the mixture field. The objective of this paper is to assess how those long ignition delays, obtained by injecting at low in-cylinder temperatures (e.g., 760-800K), are affected by EOI. Two multi-hole diesel fuel injectors with either six 0.20mm orifices or seven 0.14mm orifices have been used in a 2.34L single-cylinder optical diesel engine. We consider a range of ambient top dead center (TDC) temperatures at the start of injection from 760-1000K as well as a range of injection durations from 0.5ms to 3.1ms. Ignition delays are computed through the analysis of both cylinder pressure and chemiluminescence imaging.
Journal Article

Simulating the Mobility of Wheeled Ground Vehicles with Mercury

2017-03-28
2017-01-0273
Mercury is a high-fidelity, physics-based object-oriented software for conducting simulations of vehicle performance evaluations for requirements and engineering metrics. Integrating cutting-edge, massively parallel modeling techniques for soft, cohesive and dry granular soil that will integrate state-of-the-art soil simulation with high-fidelity multi-body dynamics and powertrain modeling to provide a comprehensive mobility simulator for ground vehicles. The Mercury implements the Chrono::Vehicle dynamics library for vehicle dynamics, which provides multi-body dynamic simulation of wheeled and tracked vehicles. The powertrain is modeled using the Powertrain Analysis Computational Environment (PACE), a behavior-based powertrain analysis based on the U.S. Department of Energy’s Autonomie software. Vehicle -terrain interaction (VTI) is simulated with the Ground Contact Element (GCE), which provides forces to the Chrono-vehicle solver.
Journal Article

Optimal Power Management of Vehicle Sourced Military Outposts

2017-03-28
2017-01-0271
This paper considers optimal power management during the establishment of an expeditionary outpost using battery and vehicle assets for electrical generation. The first step in creating a new outpost is implementing the physical protection and barrier system. Afterwards, facilities that provide communications, fires, meals, and moral boosts are implemented that steadily increase the electrical load while dynamic events, such as patrols, can cause abrupt changes in the electrical load profile. Being able to create a fully functioning outpost within 72 hours is a typical objective where the electrical power generation starts with batteries, transitions to gasoline generators and is eventually replaced by diesel generators as the outpost matures. Vehicles with power export capability are an attractive supplement to this electrical power evolution since they are usually on site, would reduce the amount of material for outpost creation, and provide a modular approach to outpost build-up.
Technical Paper

Electrical Modeling and Simulation with Matlab/Simulink and Graphical User Interface Software

2006-11-07
2006-01-3039
This paper describes modeling and simulation technologies used to simulate the electrical systems of Army vehicles using Matlab/Simulink coupled with graphical user interface software. The models were built using Mathworks' Matlab/Simulink software in conjunction with the SimPowerSystems Toolbox, a toolkit provided by Mathworks that provides models of basic electrical components such as capacitors and inductors, in addition to more advanced components such as diodes and IGBT's. The current results of this ongoing effort are presented and discussed.
Technical Paper

Power Management Software Interfaces Standard

2006-11-07
2006-01-3034
The current system requirements for the power management subsystem and ground combat vehicles for the Future Combat System require higher power and voltages for greater energy efficiency, advanced mobility, lethality and survivability. Efficient and reliable electrical power management is an essential capability within current force ground combat vehicles and will become even more important with the increased electrical power demands of future force vehicles which will exceed the capabilities of onboard power generation/storage technologies. This paper describes how to meet the aforementioned power distribution challenges through the development of a power management software interfaces standard that will provide the flexibility required by various programs and vehicles yet still provide a consistent framework for software development providing a consistent environment for all future Army programs.
Technical Paper

Experimental Investigation of Single and Two-Stage Ignition in a Diesel Engine

2008-04-14
2008-01-1071
This paper presents an experimental investigation conducted to determine the parameters that control the behavior of autoignition in a small-bore, single-cylinder, optically-accessible diesel engine. Depending on operating conditions, three types of autoignition are observed: a single ignition, a two-stage process where a low temperature heat release (LTHR) or cool flame precedes the main premixed combustion, and a two-stage process where the LTHR or cool flame is separated from the main heat release by an apparent negative temperature coefficient (NTC) region. Experiments were conducted using commercial grade low-sulfur diesel fuel with a common-rail injection system. An intensified CCD camera was used for ultraviolet imaging and spectroscopy of chemiluminescent autoignition reactions under various operating conditions including fuel injection pressures, engine temperatures and equivalence ratios.
Technical Paper

Experimental Validation of Jet Fuel Surrogates in an Optical Engine

2017-03-28
2017-01-0262
Three jet fuel surrogates were compared against their target fuels in a compression ignited optical engine under a range of start-of-injection temperatures and densities. The jet fuel surrogates are representative of petroleum-based Jet-A POSF-4658, natural gas-derived S-8 POSF-4734 and coal-derived Sasol IPK POSF-5642, and were prepared from a palette of n-dodecane, n-decane, decalin, toluene, iso-octane and iso-cetane. Optical chemiluminescence and liquid penetration length measurements as well as cylinder pressure-based combustion analyses were applied to examine fuel behavior during the injection and combustion process. HCHO* emissions obtained from broadband UV imaging were used as a marker for low temperature reactivity, while 309 nm narrow band filtered imaging was applied to identify the occurrence of OH*, autoignition and high temperature reactivity.
Technical Paper

Long Term Hydrogen Vehicle Fleet Operational Assessment

2011-09-13
2011-01-2299
The U. S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) National Automotive Center (NAC) owns a fleet of ten Hydrogen Hybrid Internal Combustion Engine (H2ICE) vehicles that have been demonstrated in various climates from 2008 through 2010. This included demonstrations in Michigan, Georgia, California and Hawaii. The fleet was consolidated into a single location between July 2009 and April 2010. Between July of 2009 and January of 2011, data collection was completed on the fleet of H2ICE vehicles deployed to Oahu, Hawaii for long-term duration testing. The operation of the H2ICE vehicles in Hawaii utilized standard operation of a non-tactical vehicle at a real-world military installation. The vehicles were fitted with data acquisition equipment to record the operation and performance of the H2ICE vehicles; maintenance and repair data was also recorded for the fleet of vehicles.
Technical Paper

Cooling Parasitic Considerations for Optimal Sizing and Power Split Strategy for Military Robot Powered by Hydrogen Fuel Cells

2018-04-03
2018-01-0798
Military vehicles are typically armored, hence the open surface area for heat rejection is limited. Hence, the cooling parasitic load for a given heat rejection can be considerably higher and important to consider upfront in the system design. Since PEMFCs operate at low temp, the required cooling flow is larger to account for the smaller delta temperature to the air. This research aims to address the combined problem of optimal sizing of the lithium ion battery and PEM Fuel Cell stack along with development of the scalable power split strategy for small a PackBot robot. We will apply scalable physics-based models of the fuel cell stack and balance of plant that includes a realistic and scalable parasitic load from cooling integrated with existing scalable models of the lithium ion battery. This model allows the combined optimization that captures the dominant trends relevant to component sizing and system performance.
Technical Paper

Development and Testing of an Online Oil Condition Monitor for Diesel Driven Army Ground Vehicles

2012-04-16
2012-01-1348
This paper describes the author's experiences in the design, validation and field-testing of a low cost, online oil condition monitor for diesel driven Army ground vehicles. This online oil condition monitor utilizes a multi-frequency approach to electrochemical impedance spectroscopy to interrogate and evaluate fluid health in near real time. A dual microcontroller processing architecture embedded in the sensor itself executes an oil-health evaluation algorithm and provides estimates of lubricant remaining useful life, as well as identification of the primary mode of degradation of the fluid. These data are transmitted off the sensor via J1939 compliant CAN messages. In this paper the unique application requirements, which formed the foundation of the development process, are discussed, and the technical and design challenges associated with producing a military grade smart-sensor at a sufficiently low price point for widespread adoption in the ground vehicle market are detailed.
Technical Paper

Parametric Reduced-Order Models of Battery Pack Vibration Including Structural Variation and Pre-Stress Effects

2013-05-13
2013-01-2006
The goal of this work is to develop an efficient numerical modeling method for the vibration of hybrid electric vehicle (HEV) battery packs to support probabilistic forced response simulations and fatigue life predictions. There are two important sources of variations in HEV battery packs that affect their structural dynamic response. One source is the uncertain level of pre-stress due to bolts or welds used for joining cells within a pack. The other source is small structural variations among the cells of a battery pack. The structural dynamics of HEV battery packs are known to feature very high modal density in many frequency bands. That is because packs are composed of nominally identical cells. The high modal density combined with small, random structural variations among the cells can lead to drastic variations in the dynamic response compared with those of the ideal nominal system.
Technical Paper

Requirements Development, Management and Architecture for Military Ground Vehicle Systems

2010-04-12
2010-01-0491
Systems engineering is a key discipline to develop, deploy, and sustain military systems. The wide variety of product types and the tendency to leverage emerging technologies require that disciplined technical planning and management processes be used by both engineers and program managers in all phases of a product's life cycle. This paper describes requirements development, management, and architecture in military systems engineering and acquisition be it software or hardware.
Journal Article

Flexible Design and Operation of a Smart Charging Microgrid

2014-04-01
2014-01-0716
The reliability theory of repairable systems is vastly different from that of non-repairable systems. The authors have recently proposed a ‘decision-based’ framework to design and maintain repairable systems for optimal performance and reliability using a set of metrics such as minimum failure free period, number of failures in planning horizon (lifecycle), and cost. The optimal solution includes the initial design, the system maintenance throughout the planning horizon, and the protocol to operate the system. In this work, we extend this idea by incorporating flexibility and demonstrate our approach using a smart charging electric microgrid architecture. The flexibility is realized by allowing the architecture to change with time. Our approach “learns” the working characteristics of the microgrid. We use actual load and supply data over a short time to quantify the load and supply random processes and also establish the correlation between them.
Technical Paper

A Software Tool for Injury Analysis of Blast and Crash Data

2019-04-02
2019-01-1225
In recent years the U.S. Army Tank-Automotive Research, Development, and Engineering Center (TARDEC) has been investigating the survivability and injury mechanisms of underbody blast and crash, and their effects on personnel, with the use of Anthropomorphic Test Devices (ATD), or crash test dummies. Injury Assessment Reference Values (IARV) for crash have been researched for decades, and the US Army Research Laboratory (ARL), some years ago, also developed IARVs for underbody blast for the Hybrid III 50th percentile ATD. More recently, TARDEC extended these IARVs for the 5th and 95th percentile. With the advent of TARDEC’s Occupant Protection Laboratory large amounts of data were accumulated, which brought an interest in automating the analysis, and so a software tool was developed. The interactive in-house written software, called ICalc, allows the user to open test data files acquired from blast testing, drop tower testing, and crash testing.
Technical Paper

Fuel-Optimal Strategies for Vehicle Supported Military Microgrids

2016-04-05
2016-01-0312
Vehicles with power exporting capability are microgrids since they possess electrical power generation, onboard loads, energy storage, and the ability to interconnect. The unique load and silent watch requirements of some military vehicles make them particularly well-suited to augment stationary power grids to increase power resiliency and capability. Connecting multiple vehicles in a peer-to-peer arrangement or to a stationary grid requires scalable power management strategies to accommodate the possibly large numbers of assets. This paper describes a military ground vehicle power management scheme for vehicle-to-grid applications. The particular focus is overall fuel consumption reduction of the mixed asset inventory of military vehicles with diesel generators typically used in small unit outposts.
Technical Paper

Powertrain Analysis and Computational Environment (PACE) for Multi-Physics Simulations Using High Performance Computing

2016-04-05
2016-01-0308
The Powertrain Analysis and Computational Environment (PACE) is a forward-looking powertrain simulation tool that is ready for a High-Performance Computing (HPC) environment. The code, written in C++, is one actor in a comprehensive ground vehicle co-simulation architecture being developed by the CREATE-GV program. PACE provides an advanced behavioral modeling capability for the powertrain subsystem of a conventional or hybrid-electric vehicle that exploits the idea of reusable vehicle modeling that underpins the Autonomie modeling environment developed by the Argonne National Laboratory. PACE permits the user to define a powertrain in Autonomie, which requires a single desktop license for MATLAB/Simulink, and port it to a cluster computer where PACE runs with an open-source BSD-3 license so that it can be distributed to as many nodes as needed.
Journal Article

Near Automatic Translation of Autonomie-Based Power Train Architectures for Multi-Physics Simulations Using High Performance Computing

2017-03-28
2017-01-0267
The Powertrain Analysis and Computational Environment (PACE) is a powertrain simulation tool that provides an advanced behavioral modeling capability for the powertrain subsystems of conventional or hybrid-electric vehicles. Due to its origins in Argonne National Lab’s Autonomie, PACE benefits from the reputation of Autonomie as a validated modeling tool capable of simulating the advanced hardware and control features of modern vehicle powertrains. However, unlike Autonomie that is developed and executed in Mathwork’s MATLAB/Simulink environment, PACE is developed in C++ and is targeted for High-Performance Computing (HPC) platforms. Indeed, PACE is used as one of several actors within a comprehensive ground vehicle co-simulation system (CRES-GV MERCURY): during a single MERCURY run, thousands of concurrent PACE instances interact with other high-performance, distributed MERCURY components.
Journal Article

A Thermal Bus for Vehicle Cooling Applications - Design and Analysis

2017-03-28
2017-01-0266
Designing an efficient cooling system with low power consumption is of high interest in the automotive engineering community. Heat generated due to the propulsion system and the on-board electronics in ground vehicles must be dissipated to avoid exceeding component temperature limits. In addition, proper thermal management will offer improved system durability and efficiency while providing a flexible, modular, and reduced weight structure. Traditional cooling systems are effective but they typically require high energy consumption which provides motivation for a paradigm shift. This study will examine the integration of passive heat rejection pathways in ground vehicle cooling systems using a “thermal bus”. Potential solutions include heat pipes and composite fibers with high thermal properties and light weight properties to move heat from the source to ambient surroundings.
X