Criteria

Text:
Sector:
Affiliation:
Display:

Results

Viewing 1 to 30 of 33
2013-08-22
Article
UTC Aerospace Systems has been selected by The Boeing Co. to manufacture landing gear for the new Boeing 737 MAX. The contract calls for UTC to provide the nose and main landing gear in addition to the main gear side struts.
2013-10-24
Article
Pratt & Whitney AeroPower has been selected to provide its APS500[D] auxiliary power unit (APU) for Dassault Aviation's Falcon 5X business jet. Pratt & Whitney AeroPower is partnering with Safran Microturbo for this project.
2014-08-15
Article
A clip-on system from UTC Aerospace Systems converts a camera to a day/night short wave infrared (SWIR) imaging system.
2017-03-28
Article
Northrop Grumman recently completed its successful inaugural flight test of the UTC Aerospace Systems MS-177 sensor payload on an RQ-4 Global Hawk. The ability to carry more powerful sensors close the capability gap between the RQ-4 and soon-to-be-retired Lockheed U-2.
2015-09-15
Technical Paper
2015-01-2536
Rinky Babul Prasad, Vinukonda Siddartha
Abstract Recent years have seen a rise in the number of air crashes and on board fatalities. Statistics reveal that human error constitutes upto 56% of these incidents. This can be attributed to the ever growing air traffic and technological advancements in the field of aviation, leading to an increase in the electronic and mechanical controls in the cockpit. Accidents occur when pilots misinterpret gauges, weather conditions, fail to spot mechanical faults or carry out inappropriate actions. Currently, pilots rely on flight manuals (hard copies or an electronic tablet) to respond to an emergency. This is prone to human error or misinterpretation. Also, a considerable amount of time is spent in seeking, reading, interpreting and implementing the corrective action. The proposed augmented head mount virtual assist for the pilot eliminates flight manuals, by virtually guiding the pilot in responding to in-flight necessities.
2015-09-15
Technical Paper
2015-01-2524
Srikanth Gampa
Abstract Multi core platforms offer high performance at low power and have been deemed as future of size, weight and power constrained applications like avionics safety critical applications. Multi core platforms are widely used in non-real time systems where the average case performance is desired like in consumer electronics, telecom domains. Despite these advantages, multi core platforms (hardware and software) pose significant certification challenges for safety critical applications and hence there has been limited usage in avionics and other safety critical applications. Many multicore platform solutions which can be certified to DO-254 & DO 178B Level A are commercially available. There is a need to evaluate these platforms w.r.t certification requirements before deploying them in the safety critical systems thereby reducing the program risks. This paper discusses the advantages of multi core platforms in terms of performance, power consumption and weight/size.
2016-09-20
Technical Paper
2016-01-2059
Rolf Loewenherz, Virgilio Valdivia-Guerrero, Daniel Diaz Lopez, Joshua Parkin
Abstract Auto transformer rectifier units (ATRUs) are commonly used in aircraft applications such as electric actuation for harmonic mitigation due to their high reliability and relative low cost. However, those components and the magnetic filter components associated to it are the major contributors to the overall size and weight of the system. Optimization of the magnetic components is essential in order to minimize weight and size, which are major market drivers in aerospace industry today. This requires knowledge of the harmonic content of the current. This can be obtained by simulation, but the process is slow. In order to enable fast and efficient design space exploration of optimal solutions, an algebraic calculation process is proposed in this paper for multi-pulse ATRUs (e.g. 12-pulse and 18-pulse rectifiers), starting from existing solution proposed for 6 pulse rectifier in the literature.
2016-09-20
Journal Article
2016-01-2022
Ajay Rao, Vivek Karan, Pradeep Kumar
Abstract Turbulence is by far the number one concern of anxious passengers and a cause for airline injuries. Apart from causing discomfort to passengers, it also results in unplanned downtime of aircrafts. Currently the Air Traffic Control (ATC) and the meteorological weather charts aid the pilot in devising flight paths that avoid turbulent regions. Even with such tailored flight paths, pilots report constant encounters with turbulence. The probability of turbulence avoidance can be increased by the use of predictive models on historical and transactional data. This paper proposes the use of predictive analytics on meteorological data over the geographical area where the aircraft is intended to fly. The weather predictions are then relayed to the cloud server which can be accessed by the aircraft planned to fly in the same region. Predictive algorithms that use Time series forecasting models are discussed and their comparative performance is documented.
2016-09-20
Technical Paper
2016-01-2025
Amir Fazeli, Adnan Cepic, Susanne Reber
Abstract Aircraft weight and center of mass are two critical design and operational parameters that have to be within a design envelope to ensure a safe and efficient operation of aircraft. Previous efforts to accurately determine aircraft weight and center of mass before takeoff using landing gear shock strut pressures have failed due to the distortion of measured pressures by shock strut seal friction. Currently, aircraft loading process is controlled with loading sheets and passenger/cargo weight estimation as there are no online measurement systems that can accurately and efficiently estimate aircraft weight and determine the center of mass location before takeoff. However, errors in loading sheets, shifting cargo and errors in weight estimation could lead to incorrect loading of aircraft and, consequently, increase the risk of accidents, particularly in cargo flights.
2016-09-20
Journal Article
2016-01-1976
Kiran Thupakula, Adishesha Sivaramasastry, Srikanth Gampa
Abstract Aviation safety is one of the key focus areas of the aerospace industry as it involves safety of passengers, crew, assets etc. Due to advancements in technology, aviation safety has reached to safest levels compared to last few decades. In spite of declining trends in in-air accident rate, ground accidents are increasing due to ever increasing air traffic and human factors in the airport. Majority of the accidents occur during initial and final phases of the flight. Rapid increase in air traffic would pose challenge in ensuring safety and best utilization of Airports, Airspace and assets. In current scenario multiple systems like Runway Debris Monitoring System, Runway Incursion Detection System, Obstacle avoidance system and Traffic Collision Avoidance System are used for collision prediction and alerting in airport environment. However these approaches are standalone in nature and have limitations in coverage, performance and are dependent on onboard equipment.
2016-09-20
Technical Paper
2016-01-2040
Satya Swaroop Panda, Uday Kishore Tammiraju
Abstract Most of the real world problems pose practical challenges for making decisions primarily due to availability of limited data. Quantification of risk and assessment of structural reliability becomes difficult in such scenarios. Techniques for performing safety analysis for such problems are discussed in this paper. While complete characterization of a system behavior may be difficult with limited data of its response, statistical models based on extreme value theory provide the basis for making decisions with reasonable confidence. The same may not be true, however, for such structures early in their design cycle due to limited experience of their performance. In such cases response surface methodology can be very useful in determination of risk and suitably making modifications to the design to improve the reliability of the component or system. Applications of these methods for some real world scenarios are demonstrated.
2014-09-16
Technical Paper
2014-01-2206
Prashant Vadgaonkar
Abstract Today's digital avionics systems leverage the use of the Embedded COTS (Commercial Off The Shelf) hardware to fit the need of small form factor, low power, reduced time to market and reduced development time with efficient use of DO-254 for compliance of product. COTS modules are entering in digital avionics systems such as COM (Computer On Module)/SOM (System On Module)/SIP (System In Package) with huge advancement in semiconductor and packaging industry. In today's scenario COTS are very useful for DAL (Development Assurance Level) C and below as the efforts on compliance for DAL A and B are huge. This paper proposes to use these for DAL A and B as well, where one can get enormous benefit on efforts of compliance and time to market. This paper makes an attempt to explain the current scenario of the Embedded COTS usage in Avionics Systems.
2015-06-15
Journal Article
2015-01-2106
Mark Ray, Kaare Anderson
Abstract Cloud phase discrimination, coupled with measurements of liquid water content (LWC) and ice water content (IWC) as well as the detection and discrimination of supercooled large droplets (SLD), are of primary importance in aviation safety due to several high-profile incidents over the past two decades. The UTC Aerospace Systems Optical Ice Detector (OID) is a prototype laser sensor intended to discriminate cloud phase, to quantify LWC and IWC, and to detect SLD and differentiate SLD conditions from those of Appendix C. Phase discrimination is achieved through depolarization scattering measurements of a circularly polarized laser beam transmitted into the cloud. Optical extinction measurements indicate the liquid and ice water contents, while the differential backscatter from two distinct probe laser wavelengths implies an effective droplet size.
2016-09-20
Technical Paper
2016-01-2012
Frank Feng, Debabrata Pal
Abstract There are many identical large solid-state switching Multi-Purpose Motor Controllers on board of one of the More Electric Aircrafts (MEA). The controllers drive over twice as many different machines with wide torque and speed ranges. The common motor controllers are installed in a central location. The machines are located at diverse and distant positions. Power is delivered and routed from the controllers to machines via a large network comprising of unshielded feeders and multiplexing units. The controllers are required to produce sine wave voltage output to machines, and draw clean power from the source to meet Power Quality (PQ) and Electromagnetic Interference (EMI) requirements. There are significant aircraft level weight savings with that concept. However, designing such a clean motor controller was a major power density challenge beyond switches, accounting for high torque main propulsion engine start and high speed Cabin Air Compressors.
2015-09-15
Journal Article
2015-01-2389
William W. Ni, Michael Cass, Daniel Bartholme
Cavitation erosion in aircraft engine and control systems is a major concern in hydrodynamic power units. In developing turbulent flow of low pressure and high velocities, a certain amount of cavitation erosion is not unusual. Cavitation can occur with the presence of fuel vapor or air bubbles dissolved in the fuel tank that are transported through the system. Cavitation erosion is caused by collapse of the bubble, which occurs violently and creates a pressure shock wave of fluid. Striking a solid surface, the shock wave can cause progressive damage if it persists. A kinetic cavitation power rate is developed to make a meaningful estimation of the cavitation erosion rate theoretically, which then can be validated with laboratory experiments. Theoretically, we manipulate parameters such as bubble size, collapse pressure, and energy for a given fuel system design, finding variation within each component of the system.
2016-09-20
Technical Paper
2016-01-1989
Qiong Wang, Rolando Burgos, Xuning Zhang, Dushan Boroyevich, Adam White, Mustansir Kheraluwala
Abstract In modern aircraft power systems, active power converters are promising replacements for transformer rectifier units concerning efficiency and weight. To assess the benefits of active power converters, converter design and optimization should be carefully done under the operation requirements of aircraft applications: electromagnetic interference (EMI) standards, power quality standards, etc. Moreover, certain applications may have strict limits on other converter specifications: weight, size, converter loss, etc. This paper presents the methodology for performance optimization of different active power converters (active front-ends, isolated DC/DC converters and three-phase isolated converters) for aircraft applications. Key methods for power converter component (e.g. inductors, semiconductor devices, etc.) performance optimization and loss calculation are introduced along with the converter optimization procedure.
2016-09-20
Technical Paper
2016-01-2067
Qingchuan Shi, Kartik Lakshminarashimhan, Christopher Noll, Eelco Scholte, Omer Khan
Abstract Modern aircraft systems employ numerous processors to achieve system functionality. In particular, engine controls and power distribution subsystems rely heavily on software to provide safety-critical functionality, and are expected to move towards multicore architectures. The computing hardware-layer of avionic systems must be able to execute many concurrent workloads under tight deterministic execution guarantees to meet the safety standards. Single-chip multicores are attractive for safety-critical embedded systems due to their lightweight form factor. However, multicores aggressively share hardware resources, leading to interference that in turn creates non-deterministic execution for multiple concurrent workloads. We propose an approach to remove on-chip interference via a set of methods to spatio-temporally partition shared multicore resources.
2016-09-20
Journal Article
2016-01-2053
Orlando Ferrante, Eelco Scholte, Claudio Pinello, Alberto Ferrari, Leonardo Mangeruca, Cong Liu, Christos Sofronis
Abstract Formal Methods, and in particular Model Checking, are seeing an increasing use in the Aerospace domain. In recent years, Formal Methods are now commonly used to verify systems and software and its correctness as a way to augment traditional methods relying on simulation and testing. Recent updates to the relevant Aerospace regulations (e.g. DO178C, DO331 and DO333) now have explicit provisions for utilization of models and formal methods. At the system level, Model Checking has seen more limited uses due to the complexity and abstractions needed. In this paper we propose several methods to increase the capability of applying Model Checking to complex Aerospace Systems. An aircraft electrical power system is used to highlight the methodology. Automated model-based methods such as Cone of Influence and Timer Abstractions are described.
2017-09-19
Technical Paper
2017-01-2118
Prashant S Vadgaonkar, Diptar banik
Abstract Avionics industry is moving towards more electric & lightweight aircrafts. Electromagnetic effects becomes significantly challenging as materials starts moving towards composite type. Traditional methods for controlling EMC will not be sufficient. This shift increases the complexity of in-flight hardware elements for EMI/EMC control. This paper discusses the need for EMI/EMC Control and brings out the analysis & applicability of various EMI/EMC standards in aerospace, commercial and industrial electronic products, provides comparative study with respect to levels. The study include various sections of DO-160 and applicable guidelines for controlling EMI/EMC with respect to LRU (Line Replaceable Unit) & wire/cable harnesses. Also presents guidelines with respect to shielding of components, selection of components, grounding schemes, filter topologies and layout considerations.
2017-09-19
Technical Paper
2017-01-2110
Ashutosh Kumar Jha, Prakash Choudhary
Abstract The complexity of software development is increasing unprecedentedly with every next generation of aircraft systems. This requires to adopt new techniques of software design and verification that could optimize the time and cost of software development. At the same time these techniques need to ensure high quality of software design and safety compliance to regulatory guidelines like DO-178C [1] and its supplements DO-330[2] and DO-331[3]. To arrive at new technologies one has to evaluate the alternate methods available for software design by developing models, integration of models, auto-code generation, auto test generation and also the performance parameters like time, effort, reuse and presentation needs to be evaluated. We have made an attempt to present summary of alternate design concept study, and edge of MBD over other design techniques.
2017-09-19
Technical Paper
2017-01-2109
Kiran Thupakula
Abstract Airport environments consist of several moving objects both in the air and on the ground. In air moving objects include aircraft, UAVs and birds etc. On ground moving objects include aircraft, ground vehicles and ground personnel etc. Detecting, classifying, identifying and tracking these objects are necessary for avoiding collisions in all environmental situations. Multiple sensors need to be employed for capturing the object shape and position from multiple directions. Data from these sensors are combined and processed for object identification. In current scenario, there is no comprehensive traffic monitoring system that uses multisensor data for monitoring in all the airport areas. In this paper, for explanation purposes, a hypothetical airport traffic monitoring system is presumed that uses multiple sensors for avoiding collisions.
2016-09-20
Technical Paper
2016-01-2052
Virgilio Valdivia-Guerrero, Ray Foley, Stefano Riverso, Parithi Govindaraju, Atiyah Elsheikh, Leonardo Mangeruca, Gilberto Burgio, Alberto Ferrari, Marcel Gottschall, Torsten Blochwitz, Serge Bloch, Danielle Taylor, Declan Hayes-McCoy, Andreas Himmler
Abstract This paper presents an overview of a project called “Modelling and Simulation Tools for Systems Integration on Aircraft (MISSION)”. This is a collaborative project being developed under the European Union Clean Sky 2 Program, a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The provision of integrated modeling, simulation, and optimization tools to effectively support all stages of aircraft design remains a critical challenge in the Aerospace industry. In particular the high level of system integration that is characteristic of new aircraft designs is dramatically increasing the complexity of both design and verification. Simultaneously, the multi-physics interactions between structural, electrical, thermal, and hydraulic components have become more significant as the systems become increasingly interconnected.
2016-09-20
Technical Paper
2016-01-2039
Prashant S. Vadgaonkar, Ullas Janardhan
Avionics industry is moving towards fly-by wire aircrafts with less reliance on mechanical systems leading to increase in the complexity of in-flight hardware elements. RTCA/DO-254 and EUROCAE ED-80 plays a vital role in the design assurance of airborne electronic hardware. RTCA/ DO-254 and EUROCAE ED-80 are the industry standards for Design Assurance Guidance for Airborne Electronic Hardware. The two different agencies FAA and EU regulate and apply this design assurance guidance to the regulatory law in CFR and EASA CS respectively. This paper discusses the need for DO-254 /ED-80 certification in Aerospace industry, the advantages and benefits to the avionics manufacturers. The paper presents the study made on similarities and differences between DO-254/ED-80.
2017-09-19
Technical Paper
2017-01-2126
Ashutosh Kumar Jha, Gaurav Sahay, Adishesha Sivaramasastry
Abstract In aerospace industry, the concept of Integrated Vehicle Health Management (IVHM) has gained momentum and is becoming need of the hour for entire value chain in the industry. The expected benefits of lesser time for maintenance reduced operating cost and ever busy airports are motivating aircraft manufacturers to come up with tools, techniques and technologies to enable advanced diagnostic and prognostic systems in aircrafts. At present, various groups are working on different systems and platforms for health monitoring of an aircraft e.g. SHM (Structural Health Monitoring), PHM (Prognostics Health Monitoring), AHM (Aircraft Health Monitoring), and EHM (Engine Health Monitoring) and so on.
2017-09-19
Technical Paper
2017-01-2125
Mohammad Barkat, Vivek Karan, Pradeep N
Abstract The exponential increase in the number of aircrafts and air travelers has triggered new innovations which aim to make airline services more reliable and consumer friendly. Quick and efficient maintenance actions with minimum downtime are the need of the hour. Areas that have a large potential for improvement in this regard are the real time use of diagnostic data, filtering/elimination of nuisance faults and machine learning capabilities with respect to maintenance actions. Although, numerous LRUs installed on the aircraft generate massive amounts of diagnostic data to detect any possible issue or LRU failure, it is seldom used in real time. The turnaround time for LRU maintenance can be greatly reduced if the results of the diagnostics conducted during LRU normal operation is relayed to ground stations in real-time. This enables the maintenance engineers to plan ahead and initiate maintenance actions well before the aircraft lands and becomes available for maintenance.
2013-09-17
Technical Paper
2013-01-2250
Nayeff Najjar, James Hare, Paul D'Orlando, Gregory Leaper, Krishna Pattipati, Andre Silva, Shalabh Gupta, Rhonda Walthall
This paper addresses the issue of fault diagnosis in the heat exchanger of an aircraft Air Conditioning System (ACS). The heat exchanger cools the air by transferring the heat to the ram-air. Due to a variety of biological, mechanical and chemical reasons, the heat exchanger may experience fouling conditions that reduces the efficiency and could considerably affect the functionality of the ACS. Since, the access to the heat exchanger is limited and time consuming, it is preferable to implement an early fault diagnosis technique that would facilitate Condition Based Maintenance (CBM). The main contribution of the paper is pre-flight fault assessment of the heat exchanger using a combined model-based and data-driven approach of fault diagnosis. A Simulink model of the ACS, that has been designed and validated by an industry partner, has been used for generation of sensor data for various fouling conditions.
2014-09-16
Technical Paper
2014-01-2132
Prashant Vadgaonkar, Ullas Janardhan, Adishesha Sivaramasastry
Abstract Performance of Avionics systems is dictated by the timely availability and usage of critical health parameters. Various sensors are extensively used to acquire and communicate the desired parameters. In today's scenario, sensors are hardwired. The number of sensors is growing due to automation which increases the accuracy of intended Aircraft functions. Sensors are distributed all over the Aircraft and they are connected through wired network for signal processing and communication. LRUs (Line Replaceable Unit) which are integrating various sensors also use a wired approach for communication. The use of a wired network approach poses challenges in terms of cable routing, stray capacitances, noise, mechanical structure and added weight to the structure. The weight of cables contributes significantly to the overall weight of the aircraft. As the weight of Aircraft increases, the required fuel quantity also increases. The Key driver for Airline operational cost is fuel.
2015-06-15
Technical Paper
2015-01-2105
Darren Glenn Jackson
Aircraft icing has been a focus of the aviation industry for many years. While regulations existed for the certification of aircraft and engine ice protection systems (IPS), no FAA or EASA regulations pertaining to certification of ice detection systems existed for much of this time. Interim policy on ice detection systems has been issued through the form of AC 20-73A as well as FAA Issue Papers and EASA Certification Review Items to deal mainly with Primary Ice Detection Systems. A few years ago, the FAA released an update to 14 CFR 25.1419 through Amendment 25-129 which provided the framework for the usage of ice detection systems on aircraft. As a result of the ATR-72 crash in Roselawn, Indiana due to Supercooled Large Droplets (SLD) along with the Air France Flight 447 accident and numerous engine flame-outs due to ice crystals, both the FAA and EASA have developed new regulations to address these concerns.
2016-09-20
Technical Paper
2016-01-1984
Michael Krenz
Abstract This paper proposes a method of optimizing aircraft system architectures by considering the efficiencies of each energy conversion step necessary to fulfill the intended function. In addition, these conversion efficiencies need to be evaluated at all critical operating points for the systems involved (e.g. engine, generator, loads, etc.). The methodology starts with examining the energy sources on the aircraft, the energy loads and the energy transfer efficiencies between the sources and the loads. Modern aircraft architecture trends are broadly addressed along with a framework for applying this methodology, but specific aircraft are not analyzed due to the proprietary nature of some of the conversion efficiency data.
2015-09-15
Technical Paper
2015-01-2582
Andre Silva, Nayeff Najjar, Shalabh Gupta, Paul D'Orlando, Rhonda Walthall
Abstract The Environmental Control System (ECS) of an aircraft provides thermal and pressure control of the engine bleed air for comfort of the crew members and passengers onboard. For safe and reliable operation of the ECS under complex operating environments, it is critical to detect and diagnose performance degradations in the system during early phases of fault evolution. One of the critical components of the ECS is the heat exchanger, which ensures proper cooling of the engine bleed air. This paper presents a wavelet-based fouling diagnosis approach for the heat exchanger.
Viewing 1 to 30 of 33

Filter

  • Aerospace
    33
  • Range:
    to:
  • Year: