Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Lap-Shoulder Belt Performance as a Function of Occupant Size

2005-04-11
2005-01-1705
The Federal Motor Vehicle Safety Standards (FMVSS) require rear seat, lap/shoulder belts to “fit” Hybrid III dummies ranging in size from a 6 year old child (H3-6C) to a 95th-percentile-male (H3-95M). No dynamic performance FMVSS, however, exist for rear seat belt systems. Variations in the three-dimensional “fit” of the same lap-shoulder belt positioned around these extreme dummy sizes suggest a possible difference in performance. The purpose of this study was to assess the performance of two production lap-shoulder belt designs in a large SUV buck on a rebound sled using instrumented H3-6C, 5th-percentile-female (H3-5F) and H3-95M dummies. Sled velocities were approximately 35 kph. Test instrumentation included: lap and shoulder belt load transducers, triaxial accelerometers at the center of gravity of the head, triaxial accelerometers and a deflection gauge in the chest, and six-axis force (and moment) transducers in the neck of the dummy.
Technical Paper

Small Occupant Dynamics in the Rear Seat: Influence of Impact Angle and Belt Restraint Design

2005-04-11
2005-01-1708
Catastrophic head and spinal injuries have been reported to older children, properly restrained in the back seats of motor vehicles. The interaction of small stature occupants in contemporary, rear restraint systems has not yet been reported in controlled frontal oblique sled test conditions. Such data is fundamental to understanding potential mechanisms of injuries and effective countermeasures. The purpose of this study was three fold: (1) to conduct a series of controlled sled tests to determine the critical angle at which torso roll-out from the shoulder belt occurs in 6 year old Hybrid III (H3-6C) and 5th percentile female Hybrid III (H3-5F) dummies, (2) to compare dummy injury measures to the standard Injury Assessment Reference Values (IARVs) as a function of impact angle, and (3) to assess the influence of belt pretensioners and anchorage geometry as countermeasures to submarining and torso rollout dummy kinematics.
X