Criteria

Text:
Sector:
Affiliation:
Display:

Results

Viewing 1 to 22 of 22
2009-07-12
Technical Paper
2009-01-2514
M. Czupalla, P. Hager, A. Hein, T. Dirlich, A. Zhukov, M. Pfeiffer, D. Klaus
In order to assess the robustness of a Spacecraft Life Support System (LSS) design based on average performance values, criteria such as stability and controllability must be considered under variable and peak system loads. The Exploration Group at the Technische Universität München (TUM) is developing the “Virtual Habitat” computational tool (V-HAB) for exactly this type of investigation. In order to characterize the relative level of confidence for a complex model such as this, a generalized metric was defined which is able to indicate an incremental Model Confidence Level (MCL) throughout the model development process. This paper describes a proposed metric for systematically rating and describing the level of model development, created for and based on the V-HAB simulation.
2005-07-11
Technical Paper
2005-01-2813
J. M. Clawson, A. Hoehn
This paper reports on the approach and progress to refine the estimates of the Mars surface photosynthetically active radiation (PAR) on a global scale that is averaged over a longer time period. While the PAR on Mars has been evaluated previously, the results have been limited in scope either temporally or spatially, such as only at a particular landing site or only over the time span of a few months. Understanding the availability of PAR is important in evaluating the practicality of using greenhouses and/or solar irradiance collectors for growing crops during manned missions to the Martian surface. Until surface investigations can be performed, computational modeling of the surface PAR can help to refine site selection and evaluation of engineering approaches and indicate the most favorable location at which to operate a greenhouse. The proposed approach is to combine multispectral irradiance models with global atmospheric opacity models developed from multiyear observations.
2006-07-17
Technical Paper
2006-01-2201
M. Schuller, T. Lalk, L. Wiseman, F. Little, O. Godard, S. Abdel-Fattah, R. Askew, D. Klaus, R. Kobrick, G. Thomas, M. Rouen, B. Conger
Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power.
1992-07-01
Technical Paper
921389
A. Hoehn, M. H. Kliss, M. W. Luttges, M. C. Robinson, L. S. Stodieck
P-MASS, the Plant-Module for Autonomous Space Support, is designed to support and provide life support for a variety of plants, algae and bacteria in low earth orbit during the maiden flight of COMET-1. The first launch is scheduled for early 1993. With a nominal mission duration of 30 days in microgravity, P-MASS will bridge the gap between the shorter duration experiments possible onboard the NSTS Space Shuttle (approximately 14 days) and the future Space Station Freedom for space biology applications. Environmental data and video images are collected, stored onboard and downlinked daily. In addition, the payload and all specimens will be returned for ground analysis with the recovery system (reentry capsule). P-MASS is designed within a payload envelope of 0.28 x 0.22 x 0.32 m (19.71) and a mass of approximately 20 kg. A total of 115 Watt electric power is available continuously for the Plant-Module (60 W lighting, 40 Watt cooling, 15 W housekeeping).
1992-07-01
Technical Paper
921361
Gail M. Brion, JoAnn Silverstein
Until now, NASA's space water reuse research program has not considered the transport of water borne infectious enteric viruses; however, viral diseases probably are a significant concern in long duration space missions. To simplify monitoring and prediction of pathogen distribution, model indicator strains historically have been used. In this research, the male specific RNA coliphage MS-2 is used as a model of enteric viruses due to their similar size and biochemical composition. Inactivation of some water borne enteric viruses by iodine has previously been characterized. In this paper, iodine inactivation of the model coliphage MS-2 in buffered water is compared with earlier bench-scale disinfection survival data and with survival in iodinated simulated shower water used in a test water recycling system.
1992-07-01
Technical Paper
921360
JoAnn Silverstein, Jon R. Schulz, Robert Barkley, Gail M. Brion, Charles Hurst
Water reuse is essential for long duration space missions. However, water recycle systems also provide a habitat for microorganisms and allow accumulation of chemical compounds which may be acutely or chronically toxic to mission crew members. Contaminant fate and accumulation in closed-loop water recycle systems is being investigated at the University of Colorado and Martin Marietta as part of the activities of the Center for Space Environmental Health (CSEH), a NASA Specialized Center of Research and Training (NSCORT). The water contaminant distribution research uses a scaled-down physical model of a water (shower, laundry, urine and/or condensate) recycle system to analyze for and model four “indicator” contaminants: viruses and bacteria, nitrogen species, and selected organic and inorganic compounds. The water recycle test bed is comprised of five or more individual water treatment processes linked in a closed loop, and spiked with chemical and biological contaminants.
1992-07-01
Technical Paper
921362
Robert Barkley, Charles Hurst, Andrew Dunham, JoAnn Silverstein, Gail M. Brion
Iodine is being considered for disinfection of recycled hygiene and potable water in Space Station Freedom. Like chlorine, the halogen iodine can form disinfection by-products (DBPs) when used as a disinfectant in waters with dissolved or colloidal organic compounds. Recycled shower and laundry wastewater, urine and condensate from the space cabin atmosphere all have large amounts of dissolved and colloidal organic compounds and may generate iodinated DBP's which can be toxic to humans. We have investigated the formation of iodinated DBP's (IDP's) in model compounds typical of shower wastewater and condensate. The selection of these model compounds and flask experiments to test for IDP formation have been described. Methods for reaction, extraction and analysis for IDP's also have been developed. We have tentatively identified likely organic precursors from recycled water and several iodinated organic compounds formed during the reaction with iodine.
1993-07-01
Technical Paper
932146
Gerald J. Smith, Paul W. Todd, Robert M. Barkley, J. Thomas McKinnon
The products of thermodegradation of fluorocarbon polymers (found in electrical insulation) will be toxic to space habitat crews, and the monitoring and detection of such contaminants are important to space environmental health. Experiments are therefore being performed on the thermodegradation of a liquid perfluoroalkane mixture (consisting of perfluorohexanes, C6F14, and −5% perfluoropentane, C5F12), similar in structure to polytetrafluoroethylene (PTFE - Teflon), in atmospheres of varying oxygen concentration. PTFE is a common material used on space vehicles for insulation of wires. When PTFE is thermally degraded, such as from the overheating of a wire and subsequent smoldering of the insulation, it may produce toxic compounds ranging from carbonyl fluoride and hydrogen fluoride through perfluorinated aromatic compounds to ultrafine particles.
1993-07-01
Technical Paper
932147
Ted G. Barrett, George W. Morgenthaler, Sarah L. Yoffe
It is well known that selection of the pressure/oxygen ratio for a human space habitat is a critical decision for the well-being and mission performance of astronauts. It has also been noted how this ratio affects the requirement for pre- and post-breathing and the type and flexibility of EVA/EHA astronaut suits. However, little attention has been paid to how these issues interact with various mission design strategies. Using the first manned mission to Mars as a baseline mission, we have separated the mission into its component parts as it relates to habitat type (i.e., the Earth-Mars interplanetary vehicle, the ascent/descent vehicle, the base, human rover vehicles, etc.) and have determined the oxygen resupply requirements for each part as they reflect a mission design strategy. These component parts form a matrix where duration of stay, loss of oxygen due to leakage and usage, and oxygen resupply needs are calculated.
2000-07-10
Technical Paper
2000-01-2477
J.M. Clawson, A. Hoehn, L.S. Stodieck, P. Todd, D.P. Cadogan
The Autonomous Garden Pod (AG-Pod) is a modular crop production system that can lower the equivalent system mass (ESM) for bioregenerative life support systems. AG-Pod combines existing technologies, many of which are at the technology readiness level (“TRL”) 8 or 9, into a flight-ready system adaptable to many needs from Space Station microgravity plant research to interplanetary transit and planetary surface food production systems. The plant-rated module resides external to the spacecraft pressurized volume and can use natural direct solar illumination. This reduces the ESM of crop production systems by eliminating the use of spacecraft internal pressurized volume and by reducing power and heat rejection resources that would be needed for full artificial lighting. However, lowering of the crop production ESM is also achieved from the use of lightweight structures including composite and inflatable technology.
2000-07-10
Technical Paper
2000-01-2507
J.M. Clawson, A. Hoehn, L.S. Stodieck, P. Todd, R.J. Stoner
Aeroponics is the process of growing plants in an air/mist environment without the use of soil or an aggregate media. Aeroponics has contributed to advances in several areas of study including root morphology, nutrient uptake, drought and flood stress, and responses to variations in oxygen and/or carbon dioxide root zone concentrations. The adaptability of the aeroponic process that has benefited researchers makes its application to spaceflight plant growth systems appealing. Greater control of growth parameters permits a greater range of crop performance throttling and the elimination of aggregates or common growth substrates lowers system mass, lessens disease propagation between plants, and can decrease the required crew time for both planting and harvesting.
2000-07-10
Technical Paper
2000-01-2510
Alex Hoehn, Paul Scovazzo, Louis S. Stodieck, James Clawson, William Kalinowski, Alexi Rakow, David Simmons, A. Gerard Heyenga, Mark H. Kliss
Accurate root zone moisture control in microgravity plant growth systems is problematic. With gravity, excess water drains along a vertical gradient, and water recovery is easily accomplished. In microgravity, the distribution of water is less predictable and can easily lead to flooding, as well as anoxia. Microgravity water delivery systems range from solidified agar, water-saturated foams, soils and hydroponics soil surrogates including matrix-free porous tube delivery systems. Surface tension and wetting along the root substrate provides the means for adequate and uniform water distribution. Reliable active soil moisture sensors for an automated microgravity water delivery system currently do not exist. Surrogate parameters such as water delivery pressure have been less successful.
2000-07-10
Technical Paper
2000-01-2468
Laura N. Supra, Barry W. Finger, Mike A. Reddig, Allen K. MacKnight, JoAnn Silverstein, David M. Klaus, James E. Urban, Dick F. Strayer
The Biological Wastewater Processor Experiment Definition team is performing the preparatory ground research required to define and design a mature space flight experiment. One of the major outcomes from this work will be a unit-gravity prototype design of the infrastructure required to support scientific investigations related to microgravity wastewater bioprocessing. It is envisioned that this infrastructure will accommodate the testing of multiple bioprocessor design concepts in parallel as supplied by NASA, small business innovative research (SBIR), academia, and industry. In addition, a systematic design process to identify how and what to include in the space flight experiment was used.
2003-07-07
Technical Paper
2003-01-2480
Alex Hoehn, Gerard Heyenga, Louis Stodieck, Melissa Sampson, Hans Seelig
Plant growth chambers, whether designed for Earth or space applications, should provide the basic means for supporting healthy plant growth of almost any species. These chambers typically satisfy species- and age-specific light, atmosphere composition, water and nutrient requirements. Engineering solutions to satisfy these basic requirements in different plant chambers may vary widely, and each species or each experimental protocol may need individual testing and adaptation of the supporting hardware and science protocols. This paper will summarize the design trades, tests and evaluation experiments conducted to ensure proper hardware functionality and proper hardware / lifeware compatibility for the desired experimental protocols in space.
1997-07-01
Technical Paper
972366
A. Hoehn, D. J. Chamberlain, J. M. Clawson, S. W. Forsyth, D. S. Hanna, M. B. Horner, P. Scovazzo, K. S. Sterrett, L. S. Stodieck, P. W. Todd, A. G. Heyenga, M. H. Kliss
PGBA, a plant growth facility developed for commercial space biotechnology research, successfully grew a total of 50 plants (6 species) during 10 days aboard the Space Shuttle Endeavor (STS-77), and has reflown aboard the Space Shuttle Columbia (STS-83 for 4 days and STS-94 for 16 days) with 55 plants and 10 species. The PGBA life support system provides atmospheric, thermal, and humidity control as well as lighting and nutrient supply in a 33 liter microgravity plant growth chamber. The atmosphere treatment system removes ethylene and other hydrocarbons, actively controls CO2 replenishment, and provides passive O2 control. Temperature and humidity are actively controlled.
2011-10-19
Article
The U.S. Army awarded Lockheed Martin a $19 million follow-on production contract for the VNsight low-light-level TV capability for Apache attack helicopters. The VNsight visible/near IR sensor provides Apache pilots with significant tactical advantages, particularly in low-light-level conditions.
2006-07-17
Technical Paper
2006-01-2063
R. E. Freeland, R. G. Helms, M. M. Mikulas
Early development of concepts for space structures up to 1000 meters in size was initiated in the early 1960's and carried through the 1970's. The enabling technologies were self-deployables, on-orbit assembly, and on-orbit manufacturing. Because of the lack of interest due to the astronomical cost associated with advancing the on-orbit assembly and manufacturing technologies, only self-deployable concepts were subsequently pursued. However, for over 50 years, potential users of deployable antennas for radar, radiometers, planar arrays, VLBF and others, are still interested and constantly revising the requirements for larger and higher precision structures. This trend persists today. An excellent example of this trend is the current DARPA/SPO ISAT Program that applies self-deployable structures technology to a 300 meter long active planar array radar antenna. This ongoing program has created a rare opportunity for innovative advancement of state-of-the-art concepts.
2004-07-19
Technical Paper
2004-01-2290
Steven P. Chappell, David M. Klaus
An eventual return to colonize the Moon or the launch of a human exploration mission to Mars will drive the need for developing novel surface Extravehicular Activity (EVA) technologies as well as require new operational and planning techniques. These advances are necessary to enable safe EVA access to the planetary surface locales that are most likely to yield exciting scientific knowledge, such as in the sedimentary deposit regions recently found on Mars or within and around large craters formed from asteroid collisions; as these represent the areas thought most likely to contain fossilized evidence of life or geological information pertaining to the origins and age of the planets. These sites, while rich in potential for scientific discovery, also introduce challenging terrain for exploration by surface EVA teams.
1993-07-01
Technical Paper
932144
Paul Todd, Michael Sklar, W. Fred Ramirez, Gerald J. Smith, George W. Morgenthaler, Günter Oberdörster
An event in which electronic insulation consisting of polytetrafluoroethylene undergoes thermodegradation on the Space Station Freedom is considered experimentally and theoretically from the initial chemistry and convective transport through pulmonary deposition in humans. The low-gravity environment impacts various stages of event simulation. Vapor-phase and particulate thermodegradation products were considered as potential spacecraft contaminants. A potential pathway for the production of ultrafine particles was identified. Different approaches to the simulation and prediction of contaminant transport were studied and used to predict the distribution of generic vapor-phase products in a Space Station model.
1997-07-01
Technical Paper
972390
W. Fred Ramirez, Mikhail Skliar
In this paper we report on the development of the air quality monitoring and early detection system for an enclosed environment with specific emphasis on manned spacecraft. The proposed monitoring approach is based on the distributed parameter model of contaminant dispersion and real-time contaminant concentration measurements. The Implicit Kalman Filtering (IKF) algorithm is used to generate on-line estimations of the spatial contamination profile, which are used for the air quality monitoring and early detection of an air contamination event. We also solve the problem of the pointwise source identification of the convection-diffusion transport processes. This is done by converting the identification problem into an optimization problem of finding a spatial location and the capacity of a point source which results in the best match of the model-predicted measurements to the observed measurements.
2002-11-05
Technical Paper
2002-01-2968
Lance Sherry, Peter Polson, Michael Feary
The efficiency and robustness of pilot-automation interaction is a function of the volume of memorized action sequences required to use the automation to perform mission tasks. This paper describes a model of pilot cognition for the evaluation of the cognitive usability of cockpit automation. Five common cockpit automation design errors are discussed with examples.
2000-07-10
Technical Paper
2000-01-2232
Alex Hoehn, Louis S. Stodieck, James Clawson, Erin Robinson, Hans Seelig, A. Gerard Heyenga, Mark H. Kliss
Spaceflight plant growth chambers require an atmosphere control system to maintain adequate levels of carbon dioxide and oxygen, as well as to limit trace gas components, for optimum or reproducible scientific performance. Recent atmosphere control anomalies of a spaceflight plant chamber, resulting in unstable CO2 control, have been analyzed. An activated carbon filter, designed to absorb trace gas contaminants, has proven detrimental to the atmosphere control system due to its large buffer capacity for CO2. The latest plant chamber redesign addresses the control anomalies and introduces a new approach to atmosphere control (low leakage rate chamber, regenerative control of CO2, O2, and ethylene).
Viewing 1 to 22 of 22

    Filter

    • Aerospace
      22
    • Range:
      to:
    • Year: