Refine Your Search

Topic

Search Results

Journal Article

An Experimentally Validated Model for Predicting Refrigerant and Lubricant Inventory in MAC Heat Exchangers

2014-04-01
2014-01-0694
The paper presents a semi-empirical model to predict refrigerant and lubricant inventory in both evaporator and condenser of an automotive air conditioning (MAC) system. In the model, heat exchanger is discretized into small volumes. Temperature, pressure and mass inventory are calculated by applying heat transfer, pressure drop and void fraction correlations to these volumes respectively. Refrigerant and lubricant are treated as a zeotropic mixture with a temperature glide. As refrigerant evaporates or condenses, thermophysical properties are evaluated accordingly with the change of lubricant concentration. Experimental data is used to validate the model. As a result, refrigerant and lubricant mass is predicted within 20% in the evaporator. However, in the condenser, lubricant mass was consistently under-predicted while refrigerant mass was predicted within 15% error. Moreover, the lubricant under-prediction becomes more significant at higher Oil Circulation Ratio (OCR).
Technical Paper

Development of a New Ejector Performance Map for Design of an Automotive Air Conditioning System

2020-04-14
2020-01-1244
Ejector as a work recovery device offers potential for developing energy efficient heating and cooling systems based on vapor compression technology. For applications like automobile air conditioning, the operating conditions vary significantly which can lead to considerable performance degradation when the system is operated in off-design conditions. Therefore, system designing warrants development of accurate ejector performance models for a wide range of operating conditions. In this paper, a novel methodology for ejector performance maps is proposed using ejector efficiency as performance parameter and volumetric entrainment ratio as characterization parameter. The proposed performance map is developed after conducting experiments to find appropriate performance representation where ejector driven flow can be characterized using ejector motive flow. The developed performance map can predict ejector pressure lift within an accuracy of 20% using an iterative solver.
Journal Article

Experimentally Validated Model of Refrigerant Distribution in a Parallel Microchannel Evaporator

2012-04-16
2012-01-0321
This paper develops a model for a parallel microchannel evaporator that incorporates quality variation at the tube inlets and variable mass flow rates among tubes. The flow distribution is based on the equal pressure drop along each flow path containing headers and tubes. The prediction of pressure drop, cooling capacity, and exit superheat strongly agree with 48 different experimental results obtained in four configurations using R134a. Predicted temperature profiles are very close to infrared images of actual evaporator surface. When compared to the uniform distribution model (that assumes uniform distribution of refrigerant mass flow rate and quality) results from the new model indicate superior prediction of cooling capacity, and exit superheat. Model results indicate maldistribution of refrigerant mass flow rate among the parallel tubes, caused primarily by pressure drop in the outlet header.
Technical Paper

Simulator Scene Detail and Visual Augmentation Guidance in Landing Training for Beginning Pilots

1991-09-01
912099
Beginning flight students were taught landings in a flight simulator with a visual landing display to examine the effects of scene detail, visual augmented guidance, and the number of landing training trials. Transfer as assessed in a criterion simulator configuration showed advantages for larger numbers of training trials, visual augmented guidance, and moderate scene detail. Transfer of training to the aircraft showed advantages for low-scene detail over moderate-scene detail for the number of landing training sessions. Subjects who received equal simulator time practicing an instrument pattern (control group) performed better than the moderate-scene detail group on student assisted landings and number of landing training sessions.
Technical Paper

International Harmonization of Safety Standards in the Automobile Industry: A Policy Perspective

1992-02-01
920836
As international markets and competitiveness gain importance in the automobile industry, interest in the issue of standards harmonization is growing. Currently, the main efforts aimed at harmonizing standards are run through the Economic Commission for Europe (ECE). One major area of ongoing progress is safety standard harmonization. One main conflict affecting resolution of this issue is the fundamental difference in regulation administration between the United States, Europe, and Japan for safety standards. Of these regions, Europe and Japan follow type approval methods, while the United States adheres to self-certification. This difference bars the United States from participating in efforts to develop a globally accepted type approval system. Key policy alternatives presented are the continuation of U.S. support for current harmonization efforts, the worldwide acceptance of one set of already-existing regulations, and non-harmonization.
Technical Paper

Evaluation of the SIMON Tractor-Semitrailer Model for Steady State and Transient Handling

2006-10-31
2006-01-3479
This research compares the responses of a vehicle modeled in the 3D vehicle simulation program SIMON in the HVE simulation operating system against instrumented responses of a 3-axle tractor, 2-axle semi-trailer combination. The instrumented tests were previously described in SAE 2001-01-0139 and SAE 2003-01-1324 as part of a continuous research effort in the area of vehicle dynamics undertaken at the Vehicle Research and Test Center (VRTC). The vehicle inertial and mechanical parameters were measured at the University of Michigan Transportation Research Institute (UMTRI). The tire data was provided by Smithers Scientific Services, Inc. and UMTRI. The series of tests discussed herein compares the modeled and instrumented vehicle responses during quasi-steady state, steady state and transient handling maneuvers, producing lateral accelerations ranging nominally from 0.05 to 0.5 G's.
Technical Paper

Evaluation of Advanced Steering Control with Computer Simulation

1993-09-01
932383
Using neural networks, an algorithm has been developed to steer a wheel loader vehicle. Mathematical functions have been used in the past in an attempt to model a human in their operation of many types of vehicles. Since such functions can typically only be derived for situations in which the problem domain is thoroughly understood, research continues in an effort to develop a complete “operator model”. Neural Network algorithms were utilized in an attempt to determine the feasibility of accurately modeling the operator of a wheel loader construction vehicle. These algorithms were also used to determine how the control of different vehicle functions might be automated on a wheel loader.
Technical Paper

Mechanical Design and Control of the Pendubot

1995-04-01
951199
In this paper we demonstrate our work to date on our underactuated two link robot called the Pendubot. First we will overview the Pendubot's design, discussing the components of the linkage and the interface to the PC making up the controller. Parameter identification of the Pendubot is accomplished both by solid modeling methods and energy equation least squares techniques. With the identified parameters, mathematical models are developed to facilitate controller design. The goal of the control is to swing the Pendubot up and balance it about various equilibrium configurations. Two control algorithms are used for this task. Partial feedback linearization techniques are used to design the swing up control. The balancing control is then designed by linearizing the dynamic equations about the desired equilibrium point and using LQR or pole placement techniques to design a stabilizing controller.
Technical Paper

Trends in Engineering Education

1985-04-01
850809
An overview of enrollment trends and curricular changes in engineering education in the past ten years. Comments are made about the implications of lower enrollment on quality of education and availability of engineers for the employment market. Discussions of curricular variations summarizes changes such as computerization of engineering studies, expansion of high school preparation, and selection of major studies for students.
Technical Paper

PROPS — An Improved CPM Technique For Project Planning and Control

1965-02-01
650290
Two recent developments in the Critical Path Method (CPM) are presented and discussed. First, the advantages of a CIRCLE notation diagram for the presentation of CPM project plans are described. As opposed to the usual operation-on-the-arrow CPM diagram, a CIRCLE diagram requires no extra “dummy” operations or events to describe the logic of the project, and operation numbers can be assigned before the diagram is drawn. Second, the concept of allowing dependent operations to overlap in time is introduced and evaluated. The operation overlapping technique allows the CPM analysis of a project without an excessive amount of breakdown of the project pieces. This idea seems to offer the link between the bar chart and the ordinary CPM diagram.
Technical Paper

Costs and Benefits of Head up Displays: An Attention Perspective and a Meta Analysis

2000-10-10
2000-01-5542
This paper reports a meta analysis of all studies located in the literature that have compared head up versus head down display of equivalent information, as these displays support both tracking (e.g., flight path control) and discrete event detection. The data clearly indicate a HUD advantage for most tasks, except tracking during cruise flight and event detection during final approach. The latter HUD cost however is observed only when events to be detected are entirely unexpected, reflecting a form of cognitive tunneling. The meta-analysis also reveals an advantage for conformal over non-conformal HUD imagery.
Journal Article

Visualization Study of the Relationship between the Orientation of Tube and the Flow Regimes Near the Expansion Valve

2020-04-14
2020-01-1256
Several types of noise exist in automobiles. The flow-induced noise in the expansion device can be very disturbing since the expansion device is located near the occupants. In many studies, the flow-induced noise is found to be mitigated when the orientation of the tube is changed. However, no study explores the reason why flow-induced noise changes when the orientation of the tube is changed. The flow-induced noise varies along with the flow regimes near the expansion devices. In this paper, an experimental based research is used to study how the tube orientation changes the flow regimes under the same operating conditions. A pumped R134a system with transparent tubes (1/4-inch ID) is used to visualize the flow regimes near the manual expansion valve. The transparent tube is a continuous connection of horizontal tubes, 45° inclined tubes, and vertical tubes.
Technical Paper

Emergency Response Personnel Training for Aircraft Accidents

1999-04-13
1999-01-1450
A new Aircraft Accident Awareness Program (AAAP) was developed, evaluated, and is available to emergency response service provider organizations (firefighters, emergency medical technicians, trauma center personnel, law enforcement, clergy, coroners, and media) who would be called to an aircraft accident scene. Aircraft accident responder training is a critical factor in accident victim crash survivability and successful life-safety outcomes. This program was designed to teach participants about the unique conditions and safety hazards associated with aircraft crashes. A blend of academic classroom investigation, exposure to airworthy/ unairworthy aircraft including operating systems and components, computer accident simulations, “hands-on” (destructive) extrication protocol training, and participation in simulated in-the-field accident scenarios was used as an instructional delivery model.
Technical Paper

The High Mounted Brake Lamp - The 4% Solution

1999-03-01
1999-01-0089
The paper reviews some of the underpinnings of the research that was done that led to adoption of the high mounted brake lamp. The expected reduction in rearend collisions of 50%, attributable to the lamp, has not been realized. Most recently, a reduction of 4% was reported. This large difference between the predicted effectiveness of the safety device with its actual effect is disturbing. The paper attempts to show the reasons for the low effectiveness which include a lack of evidence for the high-mounting location, overriding an SAE standard on the intensity of high-mounted rear signal lamps and no valid theory of driver performance.
Technical Paper

Implementation of Reinforcement Learning on Air Source Heat Pump Defrost Control for Full Electric Vehicles

2018-04-03
2018-01-1193
Air source heat pumps as the heating system for full electric vehicles are drawing more and more attention in recent years. Despite the high energy efficiency, frost accumulation on the heat pump evaporator is one of the major challenges associated with air source heat pumps. The evaporator needs to be actively defrosted periodically and heat pump heating will be interrupted during defrosting process. Proper defrost control is needed to obtain high average heat pump energy efficiency. In this paper, a new method for generating air source heat pump defrost control policy using reinforcement learning is introduced. This model-free method has several advantages. It can automatically generate optimal defrost control policy instead of requiring manually determination of the control policy parameters and logics.
Technical Paper

Vortex Tube Heat Booster to Improve Performance of Heat Driven Cooling Cycles for Automotive Applications

2016-04-05
2016-01-0245
Increasing energy costs justify research on how to improve utilization of low-grade energy that is abundantly available as waste heat from many thermodynamic processes such as internal combustion engine cycles. One option is to directly generate cooling through absorption/adsorption or vapor jet ejector cycles. As in the case of power generation cycles, cooling cycle efficiencies would increase if the heat input were available at higher temperature. This paper assesses the feasibility of a novel idea that uses a vortex tube to increase the available temperature levels of low-grade heat sources. The desired temperature increase is achieved by sending a stream of vapor that was heated by the waste heat source through a vortex tube, which further elevates the temperature used in a heat driven ejector cooling cycle.
Technical Paper

Effect of Flow Regime in the Horizontal Inlet Header on Refrigerant-Oil Mixture Distribution in a MAC Microchannel Evaporator

2014-04-01
2014-01-0701
The effect of lubricant on distribution is investigated by relating the flow regime in the horizontal inlet header and the corresponding infrared image of the evaporator. Visualization of the flow regime is performed by high-speed camera. R134a is used as the refrigerant with PAG 46 as lubricant, forming foam in all flow regimes. Quantitative information including foam location, foam layer thickness is obtained using a matlab-based video processing program. Oil circulation rate effect on flow regime is analyzed quantitatively.
Technical Paper

Lubricant Impact on R134a Distribution and Microchannel Heat Exchanger Performance

2014-04-01
2014-01-0706
Lubricant in compressor usually flows out with refrigerant. Thus, it is evitable for lubricant to be present in the heat exchanger, which significantly affects the heat exchanger performance. This paper is to investigate the effects of PAG oil on R134a distribution in the microchannel heat exchanger (MCHX) with vertical headers and to provide a tool to model R134a (with oil) distribution and its effects on MCHX capacity. The flow configuration in MCHX under the heat pump mode of the reversible system is mimicked in the experimental facility: refrigerant-oil mixture is fed into the test header from the bottom pass and exits through the top pass. It is found that a small amount of oil (OCR=0.5%) worsen the distribution. But further increasing OCR to 2.5% and 4.7%, the distribution becomes better.
Technical Paper

Lubricant Effect on Performance of R134a MAC Microchannel Evaporators

2014-04-01
2014-01-0692
This paper presents an experimental study of lubricant effect on the performance of microchannel evaporators in a typical MAC system. R134a is used as the refrigerant with PAG46 lubricant. The increase of oil circulation rate elevates the pressure drop of the evaporator. The specific enthalpy change in evaporator decreases with increasing oil circulation rate, while refrigerant distribution appears to be more uniform as indicated by infrared images of the evaporator surface temperatures. Thus mass flow rate increases.
Technical Paper

Experimental Aerodynamic Simulation of Glaze Ice Accretion on a Swept Wing

2019-06-10
2019-01-1987
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for 8.9% and 13.3% scale semispan wing models based upon the Common Research Model airplane configuration. Various levels of geometric fidelity of an artificial ice shape representing a realistic glaze-ice accretion on a swept wing were investigated. The highest fidelity artificial ice shape reproduced all of the three-dimensional features associated with the glaze ice accretion. The lowest fidelity artificial ice shapes were simple, spanwise-varying horn ice geometries intended to represent the maximum ice thickness on the wing upper surface.
X