Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Feasibility of Modifying an Existing Semi-Trailer Air Suspension Into an Anti-Rollover System

2001-11-12
2001-01-2733
This paper examines the feasibility of modifying an existing semi-trailer air suspension system to function as an anti-rollover system in addition to its normal suspension operation. The semi-trailer model used is a dynamic, two-dimensional system. The anti-rollover system controller is formulated using projective control theory. All other factors being equal, simulations show that use of the modified suspension system decreases the weight shift when the semi-trailer undergoes lateral acceleration. By decreasing weight shift, the modified suspension system decreases the possibility of rollover.
Technical Paper

An Energy Approach to Nonlinear Analysis of Roll Bars

1993-09-01
932377
Roll bars are currently a primary source of operator protection for recreational vehicles, for certain lawn and garden tractors and for small agricultural tractors. In this paper we describe a family of nonlinear models to predict the large deflection response of a roll bar due to yielding of the material. This yielding permits the structure to absorb energy. The stress-strain relationship employs a power law model. Subsequent calculation of the complementary energy stored in the structure and application of Castigliano's second theorem yield the deflection at the point of loading. To demonstrate the feasibility of this energy method in the simulation of testing of roll bars, we present numerical results for the side, vertical, and fore-aft loading cases. Results include the load-deflection response for each load case as well as the strain energy stored in the roll bar as it deforms.
Technical Paper

Safety Concerns in Automatic Control of Heavy-Duty Articulated Vehicles

2004-10-26
2004-01-2717
Control system design is one of the most critical issues for implementation of intelligent vehicle systems. Wide ranged fundamental research has been undertaken in this area and the safety issues of the fully automated vehicles are clearly recognized. Study of vehicle performance constrains is essential for a good understanding of this problem. This paper discusses safety issues of heavy-duty vehicles under automatic steering control. It focuses on the analysis of the effect of tire force saturation. Vehicle handling characteristics are also analyzed to improve understanding of the truck dynamics and control tasks. A simple differential brake control is formulated to show its effect of on reducing trailer swing.
Technical Paper

A Prototype Computer Based Test System to Test Commercial Vehicle Air Brake Systems: Application and Test Results

1999-11-15
1999-01-3782
This paper describes a practical and efficient approach for determining complete transient, as well as steady state response of tractor-trailer air brake systems by recording pushrod displacement and air brake service line pressure as a function to time. The test hardware utilizes easy to fabricate “clip on” transducers to measure pushrod stroke length. Data acquisition is via LABVIEW‚. All transducers are easy to temporarily affix to any tractor- trailer and require no alteration to the vehicle. A complete system check takes less time than manually measuring pushrod stroke as required under FMCSA. This system with one treadle application and release gives digital timing and displacement history of all brakes. Useful information includes: application and release profiles (pushrod velocity), shoe compliance upon seating and crack pressure release points for both tractor and trailer relay valves.
Technical Paper

Dynamics and Roll Stability of a Loaded Class 8 Tractor-Livestock Semi-Trailer

1999-11-15
1999-01-3732
The transporting of live cattle involves the use of Class 8 tractors and livestock semi-trailers for transportation from farms and feedlots to processing plants. This travel may include unimproved roads, local streets, two lane highways, as well as interstate highways. Typically, cattle are compartmentalized in a “double deck” fashion as it provides utility and comports with size and weight limits for commercial Class 8 vehicles. Concern has been expressed for the effect of cattle movement upon the dynamic performance of the loaded Class 8 tractor-livestock trailer assembly. Loading guidelines exist for cattle that attempt to prevent injury or debilitation during transit, and literature exists on the orientation and some kinematics of loaded cattle. Considerable literature exists on the effect of liquid slosh in tankers and swinging beef carcasses suspended from hooks in refrigerated van trailers on the dynamic response and roll stability of those vehicles.
Technical Paper

Automated Guidance Control for Agricultural Tractor Using Redundant Sensors

1999-04-14
1999-01-1874
The development of automated guidance for agricultural tractors has addressed several basic and applied issues of agricultural equipment automation. Basic analyses have included the dynamics of steering systems and posture sensors for guidance. Applied issues have evaluated the potential of several commercial sensing systems and a commercial mechanical guidance system. A research platform has been developed based on a Case 7220 Magnum1 2-wheel drive agricultural tractor. An electrohydraulic steering system was used and characterized in support of automated guidance control. Posture sensing methods were developed using GPS, geomagnetic direction sensors (GDS), inertial, and machine vision sensing systems. Sensor fusion of GPS-inertial-machine vision and GPS-GDS-machine vision provided the most flexible and accurate guidance and capable for operation under dynamically changing field conditions.
X