Refine Your Search

Topic

Author

Search Results

Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 2

2016-04-05
2016-01-0186
Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
Journal Article

Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter

2016-04-05
2016-01-0967
A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Technical Paper

Engine and Aftertreatment Co-Optimization of Connected HEVs via Multi-Range Vehicle Speed Planning and Prediction

2020-04-14
2020-01-0590
Connected vehicles (CVs) have situational awareness that can be exploited for control and optimization of the powertrain system. While extensive studies have been carried out for energy efficiency improvement of CVs via eco-driving and planning, the implication of such technologies on the thermal responses of CVs (including those of the engine and aftertreatment systems) has not been fully investigated. One of the key challenges in leveraging connectivity for optimization-based thermal management of CVs is the relatively slow thermal dynamics, which necessitate the use of a long prediction horizon to achieve the best performance. Long-term prediction of the CV speed, unlike the short-range prediction based on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications-based information, is difficult and error-prone.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

2008-10-06
2008-01-2467
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

Hydrogen DI Dual Zone Combustion System

2013-04-08
2013-01-0230
Internal combustion (IC) engines fueled by hydrogen are among the most efficient means of converting chemical energy to mechanical work. The exhaust has near-zero carbon-based emissions, and the engines can be operated in a manner in which pollutants are minimal. In addition, in automotive applications, hydrogen engines have the potential for efficiencies higher than fuel cells.[1] In addition, hydrogen engines are likely to have a small increase in engine costs compared to conventionally fueled engines. However, there are challenges to using hydrogen in IC engines. In particular, efficient combustion of hydrogen in engines produces nitrogen oxides (NOx) that generally cannot be treated with conventional three-way catalysts. This work presents the results of experiments which consider changes in direct injection hydrogen engine design to improve engine performance, consisting primarily of engine efficiency and NOx emissions.
Technical Paper

Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine

2006-10-16
2006-01-3277
Homogenous Charge Compression Ignition (HCCI) engines offer a good potential for achieving high fuel efficiency while virtually eliminating NOx and soot emissions from the exhaust. However, realizing the full fuel economy potential at the vehicle level depends on the size of the HCCI operating range. The usable HCCI range is determined by the knock limit on the upper end and the misfire limit at the lower end. Previously proven high sensitivity of the HCCI process to thermal conditions leads to a hypothesis that combustion chamber deposits (CCD) could directly affect HCCI combustion, and that insight about this effect can be helpful in expanding the low-load limit. A combustion chamber conditioning process was carried out in a single-cylinder gasoline-fueled engine with exhaust re-breathing to study CCD formation rates and their effect on combustion. Burn rates accelerated significantly over the forty hours of running under typical HCCI operating conditions.
Technical Paper

Innovative Additive Manufacturing Process for Successful Production of 7000 Series Aluminum Alloy Components Using Smart Optical Monitoring System

2020-04-14
2020-01-1300
Aircraft components are commonly produced with 7000 series aluminum alloys (AA) due to its weight, strength, and fatigue properties. Auto Industry is also choosing more and more aluminum component for weight reduction. Current additive manufacturing (AM) methods fall short of successfully producing 7000 series AA due to the reflective nature of the material along with elements with low vaporization temperature. Moreover, lacking in ideal thermal control, print inherently defective products with such issues as poor surface finish alloying element loss and porosity. All these defects contribute to reduction of mechanical strength. By monitoring plasma with spectroscopic sensors, multiple information such as line intensity, standard deviation, plasma temperature or electron density, and by using different signal processing algorithm, AM defects have been detected and classified.
Journal Article

Influence of Discretization Schemes and LES Subgrid Models on Flow Field Predictions for a Motored Optical Engine

2018-04-03
2018-01-0185
Large-eddy simulations (LES) of a motoring single-cylinder engine with transparent combustion chamber (TCC-II) are carried out using a commercially available computer code, CONVERGE. Numerical predictions are compared with high-speed particle image velocimetry (PIV) measurements. Predictions of two spatial discretization schemes, namely, numerically stabilized central difference scheme (CDS) and fully upwind scheme are compared. Four different subgrid scale (SGS) models; a non-eddy viscosity dynamic structure turbulence (DST) model of Pomraning and Rutland, one-equation eddy-viscosity (1-Eqn) model of Menon et al., a zeroequation eddy-viscosity model of Vreman, and the zeroequation standard Smagorinsky model are employed on two different grid configurations. Additionally, simulations are also performed by deactivating the LES SGS models. It is found that the predictions when using the numerically stabilized CDS are significantly better than using the fully upwind scheme.
Technical Paper

The Effect of the Location of Knock Initiation on Heat Flux Into an SI Combustion Chamber

1997-10-01
972935
A study has been conducted in order to investigate the effect of the location of knock initiation on heat flux in a Spark-Ignition (SI) combustion chamber. Heat flux measurements were taken on the piston and cylinder head under different knock intensity levels, induced by advancing the spark timing. Tests were performed with two engine configurations, the first with the spark-plug located on the rear side of the chamber and the other having a second non-firing spark-plug placed at the front side of the chamber. The presence of the non-firing spark-plug consistently shifted the location of autoignition initiation from the surface of the piston to its vicinity, without causing a noticeable increase in knock intensity. By localizing the initiation of knock, changes induced in the secondary flame propagation pattern affected both the magnitude and the rate of change of peak heat flux under heavy knock.
Technical Paper

Transient Heating of Air Bag Fabrics: Experiment and Modeling

1998-02-23
980865
A model is presented in which distinction is made between the contributions of the different mechanisms of heat transfer to an air bag fabric during deployment. An experimental setup, designed for simulation and recording of the thermal response of permeable and coated (impermeable) air bag fabrics, is described. Comparisons between the experimental results and numerical predictions show fair agreement. The preliminary results show that the model provides a framework in which the interplay between the three convective heat transfer coefficients (two surface and one volumetric) that affect the fabric temperature (and the heat loss from the upstream bag gas) can be examined. Currently the magnitude of these surface convective heat fluxes are being examined experimentally.
Technical Paper

An Experimental Investigation of Lubricant/Main Shaft Interaction and Dryout in an Automatic Transmission Model

1998-05-04
981447
When unexpected integrated lubricant-related problems occur, for example, high-speed operating conditions, lubricants can be degraded and even fail to reach certain automatic transmission parts. Dryout of oil films means a serious lack of lubrication, which may damage the power transmission line and key parts. Dryout of ATF is analogous to that in forced convective boiling and condensation. It thus requires special efforts to determine the mechanics that induce such fluid transport phenomena. This paper presents an experimental investigation of lubricant activities in the main shaft. Dimensional analysis is applied, and flow maps of the air-oil flow and dryout regimes are constructed. Correlations closely agree with the data and reveal the possibility of dryout. Heat transfer effect is briefly discussed.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
Technical Paper

Control of a Multi-Cylinder HCCI Engine During Transient Operation by Modulating Residual Gas Fraction to Compensate for Wall Temperature Effects

2007-04-16
2007-01-0204
The thermal conditions of an engine structure, in particular the wall temperatures, have been shown to have a great effect on the HCCI engine combustion timing and burn rates through wall heat transfer, especially during transient operations. This study addresses the effects of thermal inertia on combustion in an HCCI engine. In this study, the control of combustion timing in an HCCI engine is achieved by modulating the residual gas fraction (RGF) while considering the wall temperatures. A multi-cylinder engine simulation with detailed geometry is carried out using a 1-D system model (GT-Power®) that is linked with Simulink®. The model includes a finite element wall temperature solver and is enhanced with original HCCI combustion and heat transfer models. Initially, the required residual gas fraction for optimal BSFC is determined for steady-state operation. The model is then used to derive a map of the sensitivity of optimal residual gas fraction to wall temperature excursions.
Technical Paper

An Experimental Investigation of Transient Heat Losses to Tank Wall During the Inflator Tank Test

1998-09-29
982326
A series of inflator tank tests was carried out to determine the amount of transient heat losses to the tank wall during these tests. The time history data of tank wall temperature, and tank interior gas temperature and pressure, were measured. The tank wall temperature data were analyzed using an inverse heat conduction method to generate the transient heat loss fluxes from the tank gas to the tank wall. The validity of the results are discussed along with the physical reasoning and experimental observations. This is the first part of an effort in a research project to develop a comprehensive heat transfer model to predict the transient heat losses to the tank wall during the inflator tank test.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

An Approach for Modeling the Effects of Gas Exchange Processes on HCCI Combustion and Its Application in Evaluating Variable Valve Timing Control Strategies

2002-10-21
2002-01-2829
The present study introduces a modeling approach for investigating the effects of valve events and gas exchange processes in the framework of a full-cycle HCCI engine simulation. A multi-dimensional fluid mechanics code, KIVA-3V, is used to simulate exhaust, intake and compression up to a transition point, before which chemical reactions become important. The results are then used to initialize the zones of a multi-zone, thermo-kinetic code, which computes the combustion event and part of the expansion. After the description and the validation of the model against experimental data, the application of the method is illustrated in the context of variable valve actuation. It has been shown that early exhaust valve closing, accompanied by late intake valve opening, has the potential to provide effective control of HCCI combustion.
Technical Paper

Computational Development of a Dual Pre-Chamber Engine Concept for Lean Burn Combustion

2016-10-17
2016-01-2242
Pre-chambers are a means to enable lean burn combustion strategies which can increase the thermal efficiency of gasoline spark ignition internal combustion engines. A new engine concept is evaluated in this work using computational simulations of non-reacting flow. The objective of the computational study was to evaluate the feasibility of several engine design configurations combined with fuel injection strategies to create local fuel/air mixtures in the pre-chambers above the ignition and flammability limits, while maintaining lean conditions in the main combustion chamber. The current work used computational fluid dynamics to develop a novel combustion chamber geometry where the flow was evaluated through a series of six design iterations to create ignitable mixtures (based on fuel-to-air equivalence ratio, ϕ) using fuel injection profiles and flow control via the piston, cylinder head, and pre-chamber geometry.
X