Viewing 1 to 30 of 85
Technical Paper
K. S. Varde, D. M. Popa, L. K. Varde
In this investigation, cone angles of high pressure diesel sprays emerging through plain orifices were studied. The study was conducted at constant fuel pressures by using injection system in a single pulse mode. The results show cone angles to depend on orifice dimensions, background gas density as well as on injection pressure. Droplet sizes in the mixing region of the spray were also measured at a background gas density of one atmosphere. Sauter mean diameter was found to depend on orifice diameter and injection pressure. Based on the experimental results, a correlation is derived to predict mean diameter in the mixing region.
Technical Paper
Keshav S. Varde, Nanda Kumar Manoharan
Gasoline-ethanol blends are being used or have been considered as a fuel for spark ignition engines. The motivation for using the blends varies in indifferent parts of the world and even in regions within a country. The increasing cost of gasoline, combined with regional tax incentives, is one of the reasons for increased interests in gasoline-ethanol blends in recent years in the U.S. Many vehicular engines are not designed to use a specific gasoline-ethanol blend. Rather, the engines have multi-blend capability, ranging from E0 to about E85. It is plausible that engine-out emissions will vary depending on the blend being used which may be further impacted by the level of EGR used with the blends. The present work was carried out to investigate engine out emissions when a vehicular spark-ignition engine was operated on E0 and E85 and different levels of EGR. A 4-cylinder, 2.5 liter, PFI engine was used in the experimental investigation.
Technical Paper
Gang Yin, Federico Lucas, Rolf Balte, John G. Cherng
This paper is to present a systematic study on many critical factors, such as angle of the testing panel, total scanning time of the intensity probe, source room noise level, number of microphones used in the source room, sample size, distance of the microphone in the source room, intensity probe spacer size, measurement time, and receiver room size. Additionally, three noise factors; background noise level, operator and measurement distance were also included. It were discovered that test panel angles and sample sizes were the two most dominant factors. All of above are relevant to experimental SEA or SEA validation process. The complete test results and the experience gained are presented in the paper.
Technical Paper
D. Sivaraj, P. K. Mallick, P. Mohanty, R. C. McCune
This paper presents a comparison of aqueous corrosion rates in 5% NaCl solution for eight experimental creep-resistant magnesium alloys considered for automotive powertrain applications, as well as three reference alloys (pure magnesium, AM50B and AZ91D). The corrosion rates were measured using the techniques of titration, weight loss, hydrogen evolution, and DC polarization. The corrosion rates measured by these techniques are compared with each other as well as with those obtained with salt-spray testing using ASTM B117. The advantages and disadvantages of the various corrosion measurement techniques are discussed.
Technical Paper
Nikhil Bhat, Hong Tae Kang, Vivek Bhise
This paper presents a design and development approach for automotive bucket seat frame using a parametric modeling and a finite element analysis methodology. This approach is expected to help build a lightweight seat structure quickly and efficiently. This approach is general, and it can be applied in designing and developing any mechanical structural component. The design process involves, first parametric modeling of the front bucket seat frame using Pro E. This CAD model was then optimized using optimization software called Optistruct, for two cases of load case and boundary condition. The optimized design was then tested for FMVSS seat requirements using LS-DYNA. The dynamic nature of the design approach helps in changing design parameters during different stages of the design process, until the seat structure satisfies the design criteria and the strength requirements. The construction and testing of this design and the design model are still under progress.
Technical Paper
C. H. Cheng, L. C. Chan, C. P. Lai, C. L. Chow
In this paper, the formability of Ti-TWBs at different elevated temperatures is experimentally investigated. Ti-TWBs made of Ti-6Al-4V sheets with thicknesses of 0.7mm and 1.0mm are manufactured. Then, the tensile test and forming test at elevated temperatures, ranging from room temperature to 600°C, have been carried out to determine the mechanical properties and the formability of the prepared Ti-TWBs respectively. The effects of elevated temperatures on both the forming and failure behaviors of the Ti-TWBs are examined by comparing with that of the Ti-6Al-4V base metal. It is found that the formability of the Ti-TWBs at room temperature with a dissimilar thickness combination is lower than that of their base metal, whilst the formability of both the Ti-TWBs and their base metal increases with increasing forming temperature. In addition, failures have often been found at the thinner base metal during the Ti-TWB forming, provided that the quality weld is attained without defect.
Journal Article
Byeong wook Jeon, Sang-Hwan Kim
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Journal Article
Varun Negandhi, Dohoy Jung, John Shutty
A GT-suite commercial code was used to develop a fully integrated model of a light duty commercial vehicle with a V6 diesel engine, to study the use of a BorgWarner dual mode coolant pump (DMCP) in active thermal management of the vehicle. An Urban Dynamometer Driving Schedule (UDDS) was used to validate the simulation results with the experimental data. The conventional mechanical pump from the validated model was then replaced with the dual mode coolant pump. The control algorithm for the pump was based on controlling the coolant temperature with pump speed. Maximum electrical speed of the pump and the efficiency of the pump were used to determine whether the pump should run in mechanical or electrical mode. The model with the dual mode coolant pump was simulated for the UDDS cycle to demonstrate the effectiveness of control strategy.
Technical Paper
Hong Tae Kang, Abolhassan Khosrovaneh, Mark Amaya, John Bonnen, Hua-Chu Shih, Shahuraj Mane, Todd Link
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper
Roger Shulze, P.K. Mallick
The automotive industry is expected to accelerate the transition to revolutionary products, rapid changes in technology and increasing technological sophistication. This will require engineers to advance their knowledge, connect and integrate different areas of knowledge and be skilled in synthesis. In addition, they must learn to work in cross-disciplinary teams and adopt a systems approach. The College of Engineering and Computer Science (CECS) at the University of Michigan-Dearborn (UM-Dearborn) responded by creating interdisciplinary MS and Ph.D. programs in automotive systems engineering (ASE) and augmenting them with hands-on research. Students at the undergraduate level can also engage in numerous ASE activities. UM-Dearborn's ASE programs offer interesting and possibly unique advantages. The first is that it offers a spectrum of ASE degree and credit programs, from the MS to the Ph.D. to continuing education.
Technical Paper
Steven E. Underwood, Bruce Maxim, John J. Cristiano
This paper describes the design and application of a business simulation to help train employees about the new business model and culture that for an automotive supplier company that designs connected vehicle and other advanced electronic products for the automotive industry. The simulation, called SIM-i-TRI, is a three to four day collaborative learning activity that simulates the executive, administrative, engineering, manufacturing, and marketing functions in three divisions of a manufacturer that supplies parts and systems to customers in industries similar to the automotive industry. It was originally designed to support the new employee orientation at the Tier 1 supplier and to provide the participants a safe environment to practice the lessons from the orientation. The simulation has been used several times a month in the US, England, and Germany for over four years.
Technical Paper
Yi L. Murphey, Dev Kochhar, Fang Chen, Yinghao Huang, Yong Wang
We present research in progress to develop and implement a transportable instrumentation package (TIP) to collect driver data in a vehicle. The overall objective of the project is to investigate the symbiotic relationship between humans and their vehicles. We first describe the state-of-art technologies to build the components of TIP that meet the criteria of ease of installation, minimal interference with driving, and sufficient signals to monitor driver state and condition. This method is a viable alternative to current practice which is to first develop a fully instrumented test vehicle, often at great expense, and use it to collect data from each participant as he/she drives a prescribed route. Another practice, as for example currently being used in the SHRP-2 naturalistic driving study, is to install the appropriate instrumentation for data collection in each individual's vehicle, often requiring several hours.
Technical Paper
Anjan Vincent, Vivek D. Bhise, Pankaj Mallick
Seat comfort is a highly subjective attribute and depends on a wide range of factors, but the successful prediction of seat comfort from a group of relevant variables can hold the promise of eliminating the need for time-consuming subjective evaluations during the early stages of seat cushion selection and development. This research presents the subjective seat comfort data of a group of 30 participants using a controlled range of seat foam samples, and attempts to correlate this attribute with a) the anthropometric and demographic characteristics of the participants, b) the objective pressure distribution at the body-seat interface and c) properties of the various foam samples that were used for the test.
Journal Article
Shardul Bhambure, Pankaj K. Mallick
This study considers the thermal stresses in single lap adhesive joints between magnesium and steel. The source of thermal stresses is the large difference in the coefficients of thermal expansion of magnesium and steel. Two different temperature differentials from the ambient conditions (23°C) were considered, namely -30°C and +50°C. Thermal stresses were determined using finite element analysis. In addition to Mg-steel substrate combination, Mg-Mg and steel-steel combinations were also studied. Combined effect of temperature variation and applied load was also explored. It was observed that temperature increase or decrease can cause significant thermal stresses in the adhesive layer and thermal stress distribution in the adhesive layer depends on the substrate combination and the applied load.
Technical Paper
Pranab Sen Choudhury, Pankaj Mallick
With increasing use of biofuels in the automotive industry, it has become necessary to evaluate their effects on the properties of polymers used in the fuel delivery systems. In this study, we have considered the effect of biodiesel on the tensile properties of nylon-6, 30% E-glass fiber reinforced nylon-6 and impact-modified nylon-6. The tensile specimens were immersed in 100% biodiesel for up to 7 days before determining their tensile properties. Another set of specimens were immersed in 100% biodiesel under stressed condition and then their tensile properties were determined. The absorption of biodiesel and their effects on tensile modulus, tensile strength and failure strain are reported in this paper.
Technical Paper
Mohamed E. Bayou, James B. Nachtman
This paper elucidates the major issues complicating strategic investment decisions in manufacturing waste systems. The analytic hierarchy process (AHP), an innovative approach in decision theory, is applied to these decisions in a manufacturing plant at General Motors Corporation. When compared with capital budgeting models, AHP is found to offer a superior approach due to its comprehensive mechanism, a feature urgently needed to handle the increasing legal, economic and technological complexities of manufacturing wastes.
Technical Paper
M. Y. Demeri, C. L. Chow, W. H. Tai
Strains in most stamped parts are produced under non-proportional loading. Limit strains induced during forming are, therefore, path dependent. Experimental Forming Limit Diagrams (FLDs) are usually determined under proportional loading and are not applicable to most forming operations. Experimental results have shown that path dependent FLDs are different from those determined under proportional loading. A number of analytical methods have been used to predict FLDs under proportional loading. The authors have recently introduced a new method for predicting FLDs based on the theory of damage mechanics. The damage model was used successfully to predict proportional FLDs for VDIF steel and Al6111-T4. In this paper, the anisotropic damage model was used to predict non-proportional FLDs for VDIF steel. Experiments were conducted to validate model predictions by applying pre-stretch in plane strain followed by uniaxial and balanced biaxial tension.
Technical Paper
Andy Bartlett, David Standaert, Eric Ratts
Abstract This paper presents a real-time computer system for the control of refrigerant flow in an automotive air conditioning system. This is an experimental system used to investigate the potential advantages of electronic flow control over conventional flow control (using an orifice tube or thermal expansion valve). Two features of this system are presented. First, the system organization is described. Second, the control and interface software are presented. The emphasis is on the software. The system is organized as a closed loop control system. The inputs to the controller are measurements of the refrigerant system. In particular, thermocouples are used to measure the refrigerant temperature before and after the evaporator. The analog thermocouple signals are converted to digital form by an off-the-shelf, portable, data acquisition system (DAQ). Via a parallel port link, these digital measurements are transfered to a laptop computer.
Technical Paper
Keshav S. Varde, John C. Cherng, Carol J. Bailey, W. Addy Majewski
An experimental study was undertaken to investigate emissions of hydrocarbons, oxides of nitrogen, carbon monoxide, and methane hydrocarbons emitted by natural gas fueled engines and the extent of their conversion in catalysts. Two engines were used in the study: a four cylinder, 1.6 liter, spark ignition engine and a modified version of the same engine with only one of the cylinders operating at 0.4 liter capacity. Two-way and three-way catalysts were used to treat exhaust gases leaving the engine. Natural gas was supplied through gas carburetors operated at regulated pressures and supplying air-fuel ratios in the desired range. The results of the investigation showed that oxides of nitrogen could not be reduced in a three-way catalyst to the levels found in gasoline fueled engines when the operating air-fuel ratio was stoichiometric.
Technical Paper
K.S. Varde, N. Patro, Ken Drouillard
An experimental study was undertaken to study exhaust emission from a lean-burn natural gas spark ignition engine. The possibility that such an engine may help to reduce exhaust emissions substantially by taking advantage of natural gas fuel properties, such as its antiknock properties and extended lean flammability limit compared to gasoline, was the main motivation behind the investigation. A four cylinder, automotive type spark ignition engine was used in the investigation. The engine was converted to operate on natural gas by replacing its fuel system with a gaseous carburetion system. A 3-way metal metrix catalytic converter was used in the engine exhaust system to reduce emission levels. The engine operated satisfactorily at an equivalence ratio as lean as 0.6, at all speeds and loads. As a result NOx emissions were significantly reduced. However, hydrocarbon emissions were high, particularly at very lean conditions and light loads.
Technical Paper
C. L. Chow, Fan Yang, M. Omar Faruque
This paper presents a comprehensive damage model capable of predicting crash behavior of aluminum structures under varying applied loading conditions. The damage model has been implemented in a general purpose explicit nonlinear finite element code and crash analysis has been carried out for aluminum tubes. The response obtained from the finite element analysis shows a close agreement with the experimental data. The finite element program containing the proposed generalized damage model can be used to analyze aluminum structures subjected to complex service loading conditions and identify associated failure modes to assess crashworthiness.
Technical Paper
C. L. Chow, L. G. Yu, M. Y. Demeri
Abstract Based on the theory of damage mechanics, an orthotropic damage model for the prediction of forming limit diagram (FLD) is developed. The conventional method of FLD used to predict localized necking adopts two fundamentally different approaches. Under biaxial loading, the Hill's plasticity method is often chosen when α (= ε2/ε1) < 0. On the other hand, the M-K method is adopted for the prediction of localized necking when α > 0 or the biaxial stretching of sheet metal is pronounced. The M-K method however suffers from the arbitrary selection of the imperfection size, thus resulting in inconsistent predictions. The orthotropic damage model developed for predicting the FLD is based on the anisotropic damage model recently proposed by Chow et al (1993). The model is extended to take into account, during the sheet forming process, orthotropic plasticity and damage. The orthotropic FLD model consists of the constitutive equations of elasticity and plasticity coupled with damage.
Technical Paper
Elsayed Orady, Songnian Li, Yubao Chen
In this paper, a new algorithm, named Nonlinear Optimization Method (NOM) has been mathematically and computationally developed for several geometric elements. The initial condition of the NOM is obtained by LSM, then the minimum zone is optimized in accordance with tolerancing principles in ANSI Y14.5.1M. The results are verified to be the Minimum Zone Evaluation (MZE) for the inspected geometric features. The algorithm, together with its computational realization programs, are proved to be considerably reliable and robust for practical applications.
Technical Paper
Laurine J. Leep, Gary S. Strumolo, Vladimir L. Griaznov, Subrata Sengupta, Andreas M. Brohmer, Juergen Meyer
Computational fluid dynamics simulations of the gas exchange process in a crankcase-scavenged, two-stroke engine were used to study the scavenging characteristics of the engine over the whole operating range and to investigate the effects of various design changes. The simulations used time-dependent velocity and pressure boundary conditions in the transfer and exhaust ports, respectively, which were obtained from a one-dimensional gas exchange code. The bulk flow characteristics, scavenging and trapping efficiencies, computed from these simulations compared well with experimental data. Investigation of the highest load and speed case showed that moderate port angle variations only weakly influenced the scavenging efficiency and velocity field. On the other hand, modifying the exhaust pressure to simulate single cylinder operation had a more significant effect on the scavenging and showed a possible way to control the gas exchange process.
Technical Paper
Chinar Ghike, Taehyun Shim
A vehicle model is an important factor in the development of vehicle control systems. Various vehicle models having different complexities, assumptions, and limitations have been developed and applied to many different vehicle control systems. A 14 DOF vehicle model that includes a roll center as well as non-linear effects due to vehicle roll and pitch angles and unsprung mass inertias, is developed. From this model, the limitations and validity of lower order models which employ different assumptions for simplification of dynamic equations are investigated by analyzing their effect on vehicle roll response through simulation. The possible limitation of the 14 DOF model compared to an actual vehicle is also discussed.
Technical Paper
Jamie Gertsch, Taehyun Shim
Yaw and roll stability limits are derived for three quasi-static roll plane models: rigid vehicle, suspended vehicle, and compliant tire vehicle. A generalized stability equation is identified that fits the stability limits for each model. This generalized stability equation leads to the definition of two new parameters referred to as the generalized superelevation and generalized center of gravity height. These parameters are shown to be physically meaningful. The use of linearizing assumptions is minimized and road superelevation is included, resulting in a more complete equation for each stability limit. Each derived stability limit is then compared and contrasted to the typical representations found in the literature.
Technical Paper
Inchul Kim, Hualei Chen, Roger C. Shulze
The Low Mass Vehicle (LMV) that is a minivan designed to compete with the Toyota Echo but with 30% less mass has been used for the research in the Institute for Advanced Vehicle Systems. To reduce the aerodynamic forces on the LMV, the present authors have developed a rear spoiler of a new type based on the principles of fluid dynamics and through numerical computations. This new spoiler has been developed in such a way that the aerodynamic drag as well as lift on vehicles having a bluff back can be reduced when the new spoiler is attached to them. Numerical simulations show that the aerodynamic drag and lift on the LMV moving at 30 m/s reduce by 5 % and more than 100 %, respectively, when the new spoiler is attached to it.
Technical Paper
Taehyun Shim, Pradheep C. Velusamy
Vehicle roll dynamics is strongly influenced by suspension properties such as roll center height, roll steer and roll camber. In this paper, the effects of suspension properties on vehicle roll response has been investigated using a multi-body vehicle dynamics program. A full vehicle model equipped with front MacPherson and rear multilink suspensions has been used for the study. Roll dynamics of the vehicle were evaluated by performing fixed timing fishhook maneuver in the simulation. Variations of vehicle roll response due to changes in the suspension properties were assessed by quantitatively analyzing the vehicle response through simulation. Critical suspension design parameters for vehicle roll dynamics were identified and adjusted to improve roll stability of the vehicle model with passive suspension. Design of Experiments has been used for identifying critical hardpoints affecting the suspension parameters and optimization techniques were employed for parameter optimization.
Technical Paper
Vivek D. Bhise
With recent advances in microprocessors and data storage technologies, vehicle users can now bring or access large amounts of data in vehicles for purposes such as communication (e.g. e-mail, phone books), entertainment (e.g. music and video files), browsing and searching for information (e.g. on-board computers and internet). The challenge for the vehicle designer is how to design data displays and retrieval methods to allow data search and manipulation tasks by managing driver workload at safe acceptable levels. This paper presents a data retrieval menu system developed to assess levels of screens (depth of menu) that may be needed to select required information when a vehicle is equipped with the capability to access audio files, cell phone, PDA, e-mail and “On-star” type functions.
Technical Paper
Allen Hale, Derek Pelowski, Vivek Bhise
This paper presents results of two surveys, namely, a photographic measurements survey and a rider survey, conducted to determine how the type and origin of a motorcycle related to motorcycle dimensions, rider characteristics, seating posture, and motorcycle controls and displays. In the photographic survey, 12 most popular motorcycles covering three types (cruiser, sport, and touring) and three origins (Europe, Asia and North America) were measured from photographs taken in a standardized procedure with and without a rider. The data showed that the Asian and North American cruisers were very similar in all dimensions. These include seat height, seat to handlebar location, seat to foot rest location, foot rest size, and handgrip stance. This resulted in similar rider posture. North American sport motorcycles were more like cruisers than the Asian and European sport motorcycles.
Viewing 1 to 30 of 85


  • Range:
  • Year: