Criteria

Text:
Display:

Results

Viewing 1 to 30 of 51
2011-08-30
Technical Paper
2011-01-1923
J. Barker, P. Richard, C. Snape, W. Meredith
Diesel engines have traditionally been favoured in heavy-duty applications for their fuel economy, robustness, reliability and relative lack of fuel sensitivity. Recently it has seen a growth in its popularity in light duty applications due particularly to its fuel efficiency. However, as the engine technology and particularly the fuel injection equipment has evolved to meet ever stricter emissions legislation the engines have become more sensitive to deposit formation resulting from changes in fuel quality. This paper reviews bouts of concern over diesel fuel injector deposits, possible causes for the phenomenon and test methods designed to screen fuels to eliminate problems.
2014-04-01
Technical Paper
2014-01-1481
Achombili Asango, Antonino La Rocca, Paul Shayler
Abstract The influence of size and concentration of carbon nanoparticle on the viscosity of an SAE 5W-30 lubricant oil has been investigated experimentally. Data were collected for oil samples drawn from sump of light duty automotive diesel engines. The average size of soot particles in the used oil samples was in the range of 180-320nm with concentrations ranging from 0 to 2 percentage by weight (wt. %.). A Brookfield DV-II Pro rotary viscometer was used to measure dynamic viscosity at low shear rates and temperatures of 40°C and 90°C. Nanoparticle concentration and particle size distribution were evaluated using Thermo-Gravimetric Analysis (TGA) and Dynamic Light Scattering (DLS) respectively. The viscosity of suspensions of graphite powder in lubricant oil was also investigated for concentrations ranging from 0 to 2 wt. %. The results show that dynamic viscosity increases with increasing soot content and decreasing temperature.
2014-04-01
Technical Paper
2014-01-1387
Jim Barker, Colin Snape, David Scurr
Abstract The nature of internal diesel injector deposits (IDID) continues to be of importance to the industry, with field problems such as injector sticking, loss of power, increased emissions and fuel consumption being found. The deposits have their origins in the changes in emission regulations that have seen increasingly severe conditions experienced by fuels because of high temperatures and high pressures of modern common rail systems and the introduction of low sulphur fuels. Furthermore, the effect of these deposits is amplified by the tight engineering tolerances of the moving parts of such systems. The nature and thus understanding of such deposits is necessary to both minimising their formation and the development of effective diesel deposit control additives (DCA).
2015-04-14
Technical Paper
2015-01-1075
Muhammad Ahmar Zuber, Wan Mohd Faizal Wan Mahmood, Zambri Harun, Zulkhairi Zainol Abidin, Antonino La Rocca, Paul Shayler, Fabrizio Bonatesta
Abstract The focus of this study is to analyse changes in soot particle size along the predicted pathlines as they pass through different in-cylinder combustion histories obtained from Kiva-3v CFD simulation with a series of Matlab routines. 3500 locations representing soot particles were selected inside the cylinder at 8° CA ATDC as soot was formed in high concentration at this CA. The dominant soot particle size was recorded within the size range of 20-50 nm at earlier CA and shifted to 10-20 nm after 20° CA ATDC. Soot particle quantities reduce sharply until 20° CA ATDC after which they remain steady at around 1500 particles. Soot particles inside the bowl region tend to stick to the bowl walls and those remaining in the bowl experience an increase in size. Soot particles that move to the upper bowl and squish regions were observed to experience a decrease in size.
2009-11-02
Journal Article
2009-01-2637
Jim Barker, Paul Richards, Colin Snape, Will Meredith
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
2014-10-13
Technical Paper
2014-01-2708
Antonino La Rocca, David MacMillan, Paul Shayler, Michael Murphy, Ian Pegg
Abstract Cold idle operation of a modern design light duty diesel engine and the effect of multiple pilot injections on stability were investigated. The investigation was initially carried out experimentally at 1000rpm and at −20°C. Benefits of mixture preparation were initially explored by a heat release analysis. Kiva 3v was then used to model the effect of multiple pilots on in-cylinder mixture distribution. A 60° sector of mesh was used taking advantage of rotational symmetry. The combustion system and injector arrangements mimic the HPCR diesel engine used in the experimental investigation. The CFD analysis covers evolutions from intake valve closing to start of combustion. The number of injections was varied from 1 to 4, but the total fuel injected was kept constant at 17mm3/stroke. Start of main injection timing was fixed at 7.5°BTDC.
2014-10-13
Journal Article
2014-01-2720
Jim Barker, Jacqueline Reid, Colin Snape, David Scurr, William Meredith
Abstract Since 2009, there has been a rise in deposits of various types found in diesel fuel injection systems. They have been identified in the filter, the injector tip and recently inside the injector. The latter internal diesel injector deposits (IDIDs) have been the subject of a number of recent publications, and are the subject of investigations by CRC (Central Research Council Diesel Performance Group-Deposit Panel Bench/ Rig Investigation sub panel) in the US and CEN (Committee European de Normalisation TC19/WG24 Injector Deposit Task Force) and CEC (Coordinating European Council TDFG-110 engine test) in Europe. In the literature one of the internal injector deposit types, amide lacquers, has been associated with a poorly characterised noncommercial low molecular weight polyisobutylene succinimide detergent which also lacked provenance.
2014-10-13
Technical Paper
2014-01-2565
Harun Mohamed Ismail, Hoon Kiat Ng, Suyin Gan, Tommaso Lucchini
Abstract Modeling the combustion process of a diesel-biodiesel fuel spray in a 3-dimensional (3D) computational fluid dynamics (CFD) domain remains challenging and time-consuming despite the recent advancement in computing technologies. Accurate representation of the in-cylinder processes is essential for CFD studies to provide invaluable insights into these events, which are typically limited when using conventional experimental measurement techniques. This is especially true for emerging new fuels such as biodiesels since fundamental understanding of these fuels under combusting environment is still largely unknown. The reported work here is dedicated to evaluating the Adaptive Local Mesh Refinement (ALMR) approach in OpenFOAM® for improved simulation of reacting biodiesel fuel spray. An in-house model for thermo-physical and transport properties is integrated to the code, along with a chemical mechanism comprising 113 species and 399 reactions.
2014-09-16
Technical Paper
2014-01-2158
James Borg Bartolo, Chris Gerada
Abstract A 45kW, switched reluctance type, starter-generator, having a 1:4 constant power speed range has been designed as a possible candidate for a regional jet application. In the first section of this paper, a review of the major starter-generator topologies considered for the aerospace application is provided, highlighting the advantages of choosing the Switched reluctance topology for such a safety critical application. Following this, the required torque speed characteristic of the machine, along with the imposed physical constraints, in terms of cooling and outer dimensions, are also detailed. Section III provides a description of the Electromagnetic design, and challenges encountered in meeting both the low speed, peak torque node, at 8000rpm, and the high speed, high power node, at 32000rpm. The induced mechanical stresses in the rotor at such high speeds have also been evaluated and used as a material selection criterion for such a design as presented in section III.
2014-09-16
Technical Paper
2014-01-2157
Puvan Arumugam, Chris Gerada, Serhiy Bozhko, He Zhang, Weeramundage Fernando, Antonino La Rocca, Stephen Pickering
Abstract This paper describes a high-speed electrical machine for an aircraft starter-generator. A surface mounted permanent magnet machine is designed to have minimal rotor losses and a novel cooling system for the stator. An inner stator sleeve is adopted to allow for a flooded stator whilst minimizing rotor windage losses. Different slot-pole combinations are compared in view of attaining an optimal combination that provides minimum losses whilst satisfying the electromagnetic, mechanical and thermal constraints.
2012-09-10
Journal Article
2012-01-1685
Jim Barker, Colin Snape, David Scurr
The recent developments in diesel fuel injection equipment coupled with the moves in the US to using ULSD and biodiesel blends has seen an increase in the number of reports from both engine manufacturers and fleet operators regarding fuel system deposit formation issues. These deposits not only form on and within the fuel injectors but they also form elsewhere in the fuel system, due to fuel recirculation. These will eventually accumulate in the fuel filters. Historically, diesel fuel system deposits have been attributed to contamination of the fuel or the degradation of the fuel with age. Such age related degradation has been attributed to oxidation of the fuel via well documented pathways, although the initiation of this process is still poorly understood. Papers at recent SAE meetings in Florence, San Antonio, Rio de Janeiro, San Diego and Kyoto have addressed many of these causes.
2012-04-16
Technical Paper
2012-01-0697
David J. MacMillan, Theo Law, Paul J. Shayler, Ian Pegg
The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
2012-04-16
Journal Article
2012-01-1071
Michael McGhee, Paul J. Shayler, Antonino LaRocca, Michael Murphy, Ian Pegg
Experimental studies have been undertaken on a single-cylinder HPCR diesel engine with a compression ratio of 15.5:1 to explore the effect of fuel injection strategy on cycle by cycle stability. The influence of the number, separation and quantity of pilot injections on the coefficient of variation of IMEP has been investigated at -20°C, 1000 rev/min, post-start idling conditions. Injection strategy and glow plug temperature trade-off has also been investigated at a range of soak temperatures. Up to four pilot injections have been used. For timing of the main injection near to the optimum, CoVIMEP values of 10% or better can be achieved. Closer spacing of injections improved stability and extended the range of timings to meet target stability. The best combinations of pilot number and pilot quantity varied with total fuel delivered.
2012-04-16
Technical Paper
2012-01-0148
Wan Mohd Faizal Wan Mahmood, Antonino LaRocca, Paul J. Shayler, Fabrizio Bonatesta, Ian Pegg
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
2012-04-16
Journal Article
2012-01-1216
Jean-Paul Zammit, Paul J. Shayler, Richard Gardiner, Ian Pegg
Reducing friction in crankshaft bearings during cold engine operation by heating the oil supply to the main gallery has been investigated through experimental investigations and computational modelling. The experimental work was undertaken on a 2.4l DI diesel engine set up with an external heat source to supply hot oil to the gallery. The aim was to raise the film temperature in the main bearings early in the warm up, producing a reduction in oil viscosity and through this, a reduction in friction losses. The effectiveness of this approach depends on the management of heat losses from the oil. Heat transfer along the oil pathway to the bearings, and within the bearings to the journals and shells, reduces the benefit of the upstream heating.
2012-04-16
Journal Article
2012-01-1212
David C. Luff, Theo Law, Paul J. Shayler, Ian Pegg
A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
2012-04-16
Technical Paper
2012-01-1328
Theo Law, David MacMillan, Paul J. Shayler, Geoff Kirk, Ian Pegg, Roland Stark
The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.
1993-04-01
Technical Paper
931131
P. J. Shayler, S. A. May, T. Ma
Two methods of determining the rate of heat transfer from the combustion chamber have been investigated. A First Law analysis is shown to be ill-conditioned because of sensitivity to heat release and gas property calculations. An alternative approach equates cycle-averaged chamber heat transfer to the difference between heat rejected to the coolant and gas heat transfer to the exhaust port. This has been examined as a basis for calibrating the Woschni correlation.
1993-04-01
Technical Paper
931153
P. J. Shayler, S. J. Christian, T. Ma
A computational model has been developed to support investigations of temperature, heat flow and friction characteristics, particularly in connection with warm-up behaviour. A lumped capacity model of the engine block and head, empirically derived correlations for local heat transfer and friction losses, and oil and coolant circuit descriptions form the core of the model. Validation of the model and illustrative results are reported.
1997-05-01
Technical Paper
971603
P.J. Shayler, N.J. Darnton, T. Ma
A method of predicting HC, CO and NOx emissions and fuel-used over drive cycles has been developed. This has been applied to FTP-75 and ECE+EUDC drive cycles amended to include cold-start and warm-up. The method requires only fully-warm steady state indicated performance data to be available for the engine. This is used in conjunction with a model of engine thermal behaviour and friction characteristics, and vehicle/drive cycle specifications enabling engine brake load/speed variations to be defined. A time marching prediction of engine-out emissions and fuel consumption is carried out taking into account factors which include high engine friction and poor mixture preparation after cold-start. Comparisons with experimental data indicate that fuel consumption and emissions can be predicted to quantitative accuracy. The method has been applied to compare and contrast the importance of various operating regimes during the two cycles.
1997-05-19
Technical Paper
971851
P. J. Shayler, J. P. Chick, T. Ma
A correlation for total gas-side heat transfer rate has been derived from the analysis of engine data for measured heat rejection rate, frictional dissipation, and published data on exhaust port heat transfer. The correlation is related to the form developed by Taylor and Toong, and the analysis draws on this. However, cylinder and exhaust port contributions are separated. Two empirical constants are fixed to best match predicted to measured results for heat rejection to coolant and oil cooler under steady-state conditions, and also for exhaust port heat transfer rates. The separated contributions also defined a correlation for exhaust port heat transfer rate. The description of gas-side heat transfer is suited to needs for the analysis of global thermal behaviour of engines.
1997-05-01
Technical Paper
971656
P. J. Shayler, M. T. Davies, A. Scarisbrick
Experimental studies of fuel utilisation during the early stages of engine warm-up after cold-starts are reported. The investigation has been carried out on a 1.81, 4 cylinder spark-ignition engine with port electronic fuel injection. The relationship between fuel supplied and fuel accounted for by the analysis of exhaust gas composition shows that a significant mass of fuel supplied is temporarily stored or permanently lost. An interpretation of data is made which allows time-dependent variations of these to be separately resolved and estimates of fuel quantities made. The data covers a range of cold-start conditions down to -5°C at which, on a per cylinder basis, fuel stored peaks typically at around 0.75g and a total of 1g is returned over 100 seconds of engine running. Fuel lost past the piston typically accounts for 2g over 200 to 300 seconds of running.
1995-02-01
Technical Paper
950687
S. P. Stevens, P. J. Shayler, T. H. Ma
Cycle-by-cycle pressure data have been recorded for a spark ignition engine operating over a wide range of steady state and perturbed running condition. The data base has been analysed to derive mass fraction burnt, pressure development and work mean effective pressure characteristics for individual cycles. Cross-correlation coefficients have been calculated to identify predominant relationships. The effect of combustion phasing on cross-correlation coefficients is particularly significant and three regimes of behaviour have been identified. These are associated with early, optimal and late cases. The cross-correlations between parameters derived from cycle-by-cycle data do not uniformly reflect trends seen between cycle-averaged values of these. Auto-correlation results have been examined for interactions between successive cycles with less success, although, again combustion phasing can have a significant influence on the strength of auto-correlation coefficients.
1995-02-01
Technical Paper
950686
P. J. Shayler, S. A. May, T. Ma
The cycle-by-cycle variation of heat transferred per cycle (q) to the combustion chamber surfaces of spark ignition engines has been investigated for quasi-steady and transient conditions produced by throttle movements. The heat transfer calculation is by integration of the instantaneous value over the cycle, using the Woschni correlation for the heat transfer coefficient. By examination of the results obtained, a relatively simple correlation has been identified: This holds both for quasi-steady and transient conditions and is on a per cylinder basis. The analysis has been extended to define a heat flux distribution over the surface of the chamber. This is given by: where F(x/L) is a polynomial function, q″ is the heat transfer per cycle per unit area to head and piston crown surfaces and gives the distribution along the liner
1994-02-01
Technical Paper
940085
P. J. Shayler, J. D. Sage, J. Dixon, D. Eade
Spark ignition engines for automotive applications must have good cold start performance characteristics at sub-zero ambient temperatures. Satisfactory performance is most difficult to achieve at the lower end of the temperature range, typically around -30°C. The start characteristics of a particular engine depend on basic design features, starter motor characteristics, and the calibration and strategy used to regulate fuel supply during start up. The paper reports a computational model which enables the investigation of these with the minimum of experimental data. The model has been developed to run on desk-top PC machines, specifically as a CAE development tool. The formulation of the model and the experimental tests were used to generate the input data required for particular applications are described.
1994-02-01
Technical Paper
940084
P. J. Shayler, P. R. Tinwell, J. Dixon, D. Eade
1. ABSTRACT Optimising an engine specification to improve cold start performance has been investigated. Taguchi methods were used to define a test programme to assess the effect of seven build factors. Experiments were conducted to measure mixture ratio at the spark plug location after a short period of engine cranking at test conditions covering ± 15°C and three fuel-mass-supplied values. The analysis of the results identified build modifications which improved start quality and reduced HC and CO emissions substantially compared to a reference, base-line build. Injector design and location, and inlet valve timing were found to have most influence on robustness to uncontrolled variations in mixture preparation during starts.
1996-02-01
Technical Paper
960326
P. J. Shayler, M. S. Goodman, T. Ma
Engine Electronic Control (EEC) systems on spark ignition engines enable a high degree of performance optimisation to be achieved through strategy and calibration details in software, but development times and costs can be high. The range of functions performed by EEC systems, and the level of performance demanded, are increasing and new methods of development are required. In the paper, the use of neural networks in the development and implementation of open-loop control of air/fuel ratio during engine transient operating conditions is described. The investigation has addressed the definition of suitable networks, the procedure and data required to train these, and assessment of real-time performance of the implemented system. The potential benefits of the approach include reduced calibration effort and simplification of the control strategy.
1996-02-01
Technical Paper
960275
P.J. Shayler, J.P. Chick, T. Ma
The rate of heat rejection to the coolant system of an internal combustion engine depends upon coolant composition, among other factors, because this influences the coolant side heat transfer coefficient. The correlation developed by Taylor and Toong for heat transfer rate has been modified to account for this effect. The modification retains the gas-to-coolant passage thermal resistance implicit in the original correlation. The modified correlation gives predictions in agreement with experimental data. Compared to 100% water, mixtures of 50% ethylene glycol/50% water lower heat rejection rates by typically 5% and up to 25% in the extreme. This depends upon local conditions in the coolant circuit, which can give rise to different heat transfer regimes. Application of the modified correlation is outlined and illustrated.
1996-02-01
Technical Paper
960273
P.J. Shayler, M.J.F. Colechin, A. Scarisbrick
Surface-mounted heat flux sensors have been used in the intake port of a fuel injected, spark ignition engine to investigate heat transfer between the surface, the gas flows through the port, and fuel deposited in surface films. The engine is of a four valve per cylinder design, with a bifurcated intake port. For dry-port conditions heat transfer per cycle varies between 0 and 300 J/m2 depending on location, towards the surface at low temperatures and away from the surface at fully-warm conditions. Particular attention has been given to the changes in heat transfer rate associated with fuel deposition. Typically this is of the order of 5 kW/m2 in regions of heavy fuel deposition and varies by a factor of 2 over the period of an engine cycle. During warm-up, as coolant temperature increases from 0 to 90°C, changes in heat transfer associated with fuel deposition typically increase from 300 J/m2 to 1000 J/m2.
1996-10-01
Technical Paper
961995
P.J. Shayler, M.J.F. Colechin, A. Scarisbrick
Previously reported studies of heat transfer between the intake port surface, gas flows in the port, and fuel deposited in surface films have been extended to examine details of the heat flux variations which occur within the engine cycle. The dynamic response characteristics of the surface-mounted heat flux sensors have been determined, and measured heat flux data corrected accordingly to account for these characteristics. Details of the model and data processing technique used are described. Corrected intra-cycle variations of heat transfer to fuel deposited have been derived for engine operating conditions at 1000 RPM covering a range of manifold pressures, fuel supply rates, port surface temperatures, and fuel injection timings. Both pump-grade gasoline and isooctane fuel have been used. The effects of operating conditions on the magnitude and features of the heat flux variations are described.
Viewing 1 to 30 of 51

Filter

  • Range:
    to:
  • Year: