Refine Your Search

Topic

Search Results

Technical Paper

The Isochoric Engine

2020-04-14
2020-01-0796
For the gasoline engine, the isochoric process is the ideal limit of the ideal processes. During the project, a combustion engine with real isochoric boundary conditions is built. A “resting time” of the piston for several degrees crank angle in the top dead center (TDC) can be realized with a special crank drive. This crank drive consists of two crankshafts with different strokes, which are combined. The two crankshafts rotate with a ratio of two to one in opposite directions. The total stroke corresponds to the amount of the first crankshaft, so it is possible to investigate different strokes of the second crankshaft in the same crankcase. Different “resting times” can be achieved by different strokes of the second crankshaft. A specific combination of both crankshafts make a stroke possible which corresponds to that of a conventional combustion engine.
Journal Article

Some Useful Additions to Calculate the Wall Heat Losses in Real Cycle Simulations

2012-04-16
2012-01-0673
More than 20 years after the first presentation of the heat transfer equation according to Bargende [1,2], it is time to introduce some useful additions and enhancements, with respect to new and advanced combustion principles like diesel- and gasoline- homogeneous charge compression ignition (HCCI). In the existing heat transfer equation according to Bargende the calculation of the actual combustion chamber surface area is formulated in accordance with the work of Hohenberg. Hohenberg found experimentally that in the piston top land only about 20-30% of the wall heat flux values from the combustion chamber are transferred to the liner and piston wall. Hohenberg explained this phenomenon that is caused by lower gas temperature and convection level in charge within the piston top land volume. The formulation just adds the existing piston top land surface area multiplied by a specified factor to the surface of the combustion chamber.
Technical Paper

Thixoforming Of Aluminum

1998-02-23
980456
Thixoforming is another word for Semi-Solid-Metalforming (SSM) which means that metal will be formed between solid and liquid temperature. In this state the material behavior is thixotropic. Aluminum alloys can be formed in this thixotropic state when 30 to 40% of the material is liquid. In this case it is possible to form the aluminum in a process that is located between the die-casting and the forging technology. The thixoforming process allows it to produce Near Net Shape aluminum-parts with high quality for the automotive industry. This paper is intended to give the reader some examples about and some insights into the possible applications of the thixoforming process.
Technical Paper

Life Cycle Engineering of a Three-Way-Catalyst System as an Approach for Government Consultation

1998-11-30
982222
Cars cause a lot of pollutants during the utilization phase. Within the last years environmental legislation tried to reduce the emissions by the introduction of very tight laws. The results are impressive: Most of the car exhaust emissions like carbonmonoxid and nitrous oxides have been reduced. At this stage new emission reduction limits in Europe as well as in the United States can only be achieved if the formulation of the catalyst system is significantly changed. An increased use of precious metals and rare earth materials is the result of such a modification which succeeds in a more expensive design of the total catalyst systems. More expensive means not only cost aspects but also the environmental burdens related to the increased production of precious metals and other catalyst components. The Life Cycle Engineering (LCE) of the catalyst system which achieves the new legislation is demonstrated as well as the effects to the usage phase.
Technical Paper

Life Cycle Engineering a Powerful Tool for Product Improvement

1998-11-30
982172
The Institute for Polymer Testing and Polymer Science of the University of Stuttgart has been investigating automotive parts, structures and cars during their life cycle in plenty cooperation with the European automobile producers and their suppliers for the last 9 years. Therefore a holistic approach has been developed to combine tasks from technique, economic and environment in a methodology called Life Cycle Engineering (LCE). The goal is to find a way to support designer and engineers as well as police makers and public with this three-dimensional interrelated information to have the possibility to manufacture future products in a more sustainable way without loosing contact two the traditional parameters technique and costs.
Technical Paper

A Hydrodynamic Contact Algorithm

2001-09-24
2001-01-3596
Today, mechanical systems such as the piston groups of internal combustion engines are simulated using Multiple Body-System (MBS) - approaches. However, the use of these models is restricted to a few problems as their adaptability is limited. The simulation of mechanical systems only by means of finite elements shows great promise for the future. In order to consider lubrication effects between two touching bodies of a mechanical system, a hydrodynamic contact algorithm (HCA) for finite element (FE) applications was developed. This paper discusses the technical background and first results for the simulation of a piston group using this new approach.
Technical Paper

Advanced Manufacturing of Ceramic Matrix Composites for Disk Brake Rotors

2003-03-03
2003-01-1178
The strong demand for advanced lightweight structures in the automotive industry has increased activities in the development of new structural materials with low densities and tailored properties. Weight savings in the wheel suspension by the use of lightweight materials provide the additional benefit of an improvement in comfort behavior and driveability. The replacement of iron based materials with ceramics offers the possibility for a significant mass reduction. In the case of high tribological, environmental and thermal loads, ceramics provide the additional advantages of excellent wear, corrosion and temperature resistance with tailored properties for application as brake disk material. Silicon carbide (SiC) ceramics are promising structural materials in various high temperature and tribological applications.
Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
Technical Paper

Cycle Resolved Flow Field Measurements Using a PIV Movie Technique in a SI Engine

1992-10-01
922354
2-dimensional time resolved (200 frames/s) flow field measurements have been made in a transparent SI square piston engine using a movie version of particle image velocimetry (PIV). To this end the beam of a copper vapor laser was formed into a light sheet and was double pulsed with a pulse separation of 50 μs at a repetition rate of 200 Hz. A rotating drum camera was used to record the Mie-scattered signals from seeding particles. The circumferential velocity of the drum of the camera causes an image shifting of the two exposures taken with a double pulse. By proper adaption of drum and engine speed, a series of up to 70 double pulsed images per individual engine cycle may be recorded on film. This film data may be evaluated uniquely with respect to both magnitude and direction of individual flow vectors in the flow field.
Technical Paper

Quantitative 2D LIF Measurements of Air/Fuel Ratios During the Intake Stroke in a Transparent SI Engine

1992-10-01
922320
The fluorescence characteristics of different carbonyl compounds were investigated in a pressurized bomb using an excimer laser (308 nm) for excitation. The partial pressure of the carbonyl compounds and air was varied between 0 - saturation pressure and 0 - 5 bar, respectively. The fluorescence signal of different ketones increased almost linearly with vapour pressure. It was found to be almost independent of air pressure indicating only a weak quenching influence of oxygen. Ethylmethylketone (EMK) has a boiling temperature and vapour pressure similar to gasoline. Therefore, the applicability of EMK for measuring 2-D fuel distributions in a combustion chamber was tested in a transparent SI square piston engine. EMK was injected into the intake manifold by a conventional injector for studying the fuel/air mixing during the intake and compression stroke at 1.000 rpm. From the 2-D fluorescence signals 2-D air/fuel ratios were calculated using calibration data from bomb experiments.
Technical Paper

Fundamental Research and Draw Die Concepts for Deep Drawing of Tailored Blanks

1995-02-01
950921
According to the present state of knowledge, the use of “Tailored Blanks” with different sheet thicknesses and/or grades represents an interesting manufacturing alternative in the design and development of sheet metal parts in the automotive industry. In order to assess the forming behavior, fundamental research was conducted on laser and mash seam welded blanks. Based on this experimental findings, a segmented draw die was designed and built to determine the limits of the metal forming process by deep drawing of car body parts. The results with this draw die showed that a uniform blankholder pressure must be guaranteed during the forming process in the flange region of the part. This necessitated definite slots in the region of the weld line for the mash seam welded blanks. Furthermore, a die concept was presented to enable an equalization of both sheet thickness steps and sheet thickness fluctuations, without requiring replacement of the respective draw die components.
Technical Paper

3-Dimensional Description of Sheet Metal Surfaces

1995-02-01
950918
During sheet metal forming processes, the friction conditions have a decisive influence on forming limits, the robustness of the production process and the quality of the parts produced, with significant forces required to overcome friction between the sheet and the tools. If lot-to-lot reproducibility is to be guaranteed, an appropriate method of characterizing the sheet surface topography is needed to monitor the sheet metal fabrication process. Newly developed optical measurement techniques and computer workstation technology are presented which enable the topography of sheet surfaces to be described in three dimensions.
Technical Paper

Force-Stroke-Curve of Gas Springs

1997-02-24
970982
The use of gas springs with a surge tank to generate blank holding forces in drawing tools is increasing. These gas spring systems are characterized by an almost constant behaviour of the spring force over the spring displacement. To prevent an increase of the normal pressure with increasing stroke in a drawing process, it is advantageous to obtain a degressive force-displacement behaviour of the gas springs. For this reason, a gas spring system was developed to realize a decrease of the blank holding forces over the stroke without large additional expenditure. The technical realization takes place in an exact controlling of the upper and lower pressure chamber of the nitrogen cylinder.
Technical Paper

Life Cycle Inventories - New Experiences to Save Environmental Loads and Costs

1997-04-08
971171
The Institute for Polymer Testing and Polymer Science (IKP) is an independent institute of the University of Stuttgart. For approximately 8 years work is done on the field of Life Cycle Engineering. The first couple of years knowledge about the production of materials was collected within plenty industrial cooperation. Parallel to this a methodology for the Life Cycle Engineering approach and a software system (GaBi 1.0-2.0) were developed. Based on these information, projects for balancing single parts like bumpers, fender, air intake manifolds and oil filters followed by projects handling more complex parts or processes like several body in white, headlights, fuel tanks, green tire or coating processes were done to establish the methodology of Life Cycle Engineering as a tool for decision makers and weak point analysis. Parallel to this a methodology for an Life Cycle Inventory (LCI) for the system automobile was developed in cooperation with the Volkswagen AG in 1993.
Technical Paper

Pulsating Blankholder Force

1997-02-24
970987
In sheet metal stamping some industrial applications have shown that it is possible to achieve larger drawn depth by using a pulsating blankholder force. In deep drawing, areas with and without tangential stresses have to be distinguished. Areas without tangential stresses can be described by the strip drawing test. Areas with tangential stresses are described by using a deep drawing die for the production of cups which are axisymmetric. With the strip drawing test it could be shown that it is possible to reduce the increase of the friction force, caused by adhesion. Another effect is the reduction of the peak of the transition of static to dynamic friction. It was shown by experimental research, that the wrinkle height of parts, produced with pulsating blankholder force is in the range of the wrinkle height of parts produced with a constant blankholder force which is equal to the maximum force of the pulsation.
Technical Paper

Three-Dimensional Simulation of the Piston Group

2000-03-06
2000-01-1239
For basic research on the piston group a new simulation technique is developed using the contact algorithm of a commercial FE-code (MARC). Several improvements were made in order to adapt the MARC solver to the problem of sliding and dynamic contact. The first computations, a real transient analysis simulating the piston group, of both a two-stroke engine and a modern direct injected four-stroke Diesel engine for passenger cars, show that the new method is able to calculate the movements, velocities and accelerations of the piston. The quality of the results is mainly influenced by the hydrodynamic effects.
Technical Paper

Presenting a Fourier-Based Air Path Model for Real-Time Capable Engine Simulation Enhanced by a Semi-Physical NO-Emission Model with a High Degree of Predictability

2016-10-17
2016-01-2231
Longitudinal models are used to evaluate different vehicle-engine concepts with respect to driving behavior and emissions. The engine is generally map-based. An explicit calculation of both fluid dynamics inside the engine air path and cylinder combustion is not considered due to long computing times. Particularly for dynamic certification cycles (WLTC, US06 etc.), dynamic engine effects severely influence the quality of results. Hence, an evaluation of transient engine behavior with map-based engine models is restricted to a certain extent. The coupling of detailed 1D-engine models is an alternative, which rapidly increases the model computation time to approximately 300 times higher than that of real time. In many technical areas, the Fourier transformation (FT) method is applied, which makes it possible to represent superimposed oscillations by their sinusoidal harmonic oscillations of different orders.
Technical Paper

Pulsating Blankholder Technology

1999-09-28
1999-01-3155
In this paper the effects of pulsating blankholder forces in deep draw processes for sheet metal parts are discussed. Areas with and without tangential compressive stresses in the flanges, which are located between the binders, are discussed separately. Areas without tangential compressive stresses can be simulated by a special friction strip-draw test using a pulsating normal force ( representing the blankholder force ). Investigations using this equipment show that by pulsating blankholder forces it is possible to avoid galling and to reduce the friction force. Areas with tangential compressive stresses can be simulated by deep drawing axissymmetric cups using a pulsating blankholder force. Investigations with this equipment show that without increasing the danger of wrinkling the friction forces can be reduced by pulsating blankholder forces, when a certain frequency limit is reached.
Technical Paper

New Machine Concept for Hydroforming Tubes and Extrusions, Part 2

1999-09-28
1999-01-3158
In cooperation with industrial companies at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart, Germany, a new press concept specially for hydroforming tubes and extrusions was developed. The press has a capacity of 3500 tons closing force and a press table size of 2500 mm × 900 mm. A great reduction in costs can be achieved by integrating spacers between the frame of the press and the ram. This paper introduces this new press.
X