Viewing 1 to 30 of 38
Technical Paper
Costin D. Untaroiu, Yuan-Chiao Lu
The THOR-NT dummy has been developed and continuously improved by NHTSA to provide automotive manufacturers an advanced tool that can be used to assess the injury risk of vehicle occupants in crash tests. With the recent improvements of finite element (FE) technology and the increase of computational power, a validated FE model of THOR may provide an efficient tool for the design optimization of vehicles and their restraint systems. The main goal of this study was to improve biofidelity of a head-neck FE model of THOR-NT dummy. A three-dimensional FE model of the head and neck was developed in LS-Dyna based on the drawings of the THOR dummy. The material properties of deformable parts and the joints properties between rigid parts were assigned initially based on data found in the literature, and then calibrated using optimization techniques.
Technical Paper
Neng Yue, Jaeho Shin, Costin D. Untaroiu
More than half of occupant lower extremity (LEX) injuries due to automotive frontal crashes are in the knee-thigh-hip (KTH) complex. To design the injury countermeasures for the occupant LEX, first the biomechanical and injury responses of the occupant LEX components during automotive frontal crashes should be known. The objective of this study is to develop a detailed biofidelic occupant LEX Finite Element (FE) model based on the component surfaces reconstructed from the medical image data of a 50th percentile male volunteer in a sitting posture. Both volumetric (unstructured) and structural mesh methods were used to generate the solid elements (mostly hexahedral type) to enhance the model simulation accuracy. The FE model includes the femur, tibia, fibula, patella, cartilage, ligaments, menisci, patella tendon, flesh, muscle, and skin. The constitutive material models and their corresponding parameters were defined based on literature data.
Technical Paper
Gwansik Park, Taewung Kim, Jeff Crandall, Andy Svendsen, Nathaniel Saunders, Craig Markusic
Abstract The goal of this study was to evaluate the biofidelity of the three computational surrogates (GHBMC model, WorldSID model, and the FTSS ES-2re model) under the side impact rigid wall sled test condition. The responses of the three computational surrogates were compared to those of post mortem human surrogate (PMHS) and objectively evaluated using the correlation and analysis (CORA) rating method. Among the three computational surrogates, the GHBMC model showed the best biofidelity based on the CORA rating score (GHBMC =0.65, WorldSID =0.57, FTSS ES-2re =0.58). In general, the response of the pelvis of all the models showed a good correlation with the PMHS response, while the response of the shoulder and the lower extremity did not. In terms of fracture prediction, the GHBMC model overestimated bone fracture.
Technical Paper
Robert Kendall, Mark Meissner, Jeff Crandall
This research uses simulations of vehicle-pedestrian collisions to determine if the risk of pedestrian head injury is greater from impact with the vehicle or from impact with the ground, and to determine the influence of vehicle speed, vehicle type, and pedestrian stance on the injury risk. Five speeds, two vehicle types and four pedestrian stances are examined. In addition, a smaller set of simulations is included to determine the influence of body orientation just prior to ground impact. As anticipated, risk of head injury from both the vehicle and the ground tends to increase with vehicle speed, but injury risk from the ground is less predictable. At lower speeds, the vehicle tends to pose a greater risk of injury than does the ground, while at higher speeds the probability of injury from both the vehicle and ground is typically very large.
Technical Paper
Richard Kent, Sang-Hyun Lee, Kurosh Darvish, Stewart Wang, Craig S. Poster, Aaron W. Lange, Chris Brede, David Lange, Fumio Matsuoka
The human body undergoes a variety of changes as it ages through adulthood. These include both morphological (structural) changes (e.g., increased thoracic kyphosis) and material changes (e.g., osteoporosis). The purpose of this study is to evaluate structural changes that occur in the aging bony thorax and to assess the importance of these changes relative to the well-established material changes. The study involved two primary components. First, full-thorax computed tomography (CT) scans of 161 patients, age 18 to 89 years, were analyzed to quantify the angle of the ribs in the sagittal plane. A significant association between the angle of the ribs and age was identified, with the ribs becoming more perpendicular to the spine as age increased (0.08 degrees/year, p=0.012). Next, a finite element model of the thorax was used to evaluate the importance of this rib angle change relative to other factors associated with aging.
Technical Paper
Costin Untaroiu, Kurosh Darvish, Jeff Crandall, Bing Deng, Jenne-Tai Wang
A finite element (FE) model of the lower limb was developed to improve the understanding of injury mechanisms of thigh, knee, and leg during car-to-pedestrian impacts and to aid in the design of injury countermeasures for vehicle front-ends. The geometry of the model was reconstructed from CT scans of the Visible Human Project Database and commercial anatomical databases. The geometry and mass were scaled to those of a 50th percentile male and the entire lower limb was positioned in a standing position according to the published anthropometric references. A "structural approach" was utilized to generate the FE mesh using mostly hexahedral and quadrilateral elements to enhance the computational efficiency of the model. The material properties were selected based on a synthesis on current knowledge of the constitutive models for each tissue.
Technical Paper
Timothy C. Scott, Larry K. McDonald
Advanced design of modern engine cooling and vehicle HVAC components involves sophisticated simulation. In particular, front end air flow models must be able to cover the complete range of conditions from idle to high road speeds involving multiple fans of varying types both powered and unpowered. This paper presents a model for electric radiator cooling fans which covers the complete range of powered and unpowered (freewheel) operation. The model applies equally well to mechanical drive fans.
Technical Paper
David Poulard, Damien Subit, John-Paul Donlon, David J. Lessley, Taewung Kim, Gwansik Park, Richard W. Kent
The objective of the study was to analyze independently the contribution of pre-impact spine posture on impact response by subjecting a finite element human body model (HBM) to whole-body, lateral impacts. Seven postured models were created from the original HBM: one matching the standard driving posture and six matching pre-impact posture measured for each of six subjects tested in previously published experiments. The same measurements as those obtained during the experiments were calculated from the simulations, and biofidelity metrics based on signals correlation were established to compare the response of HBM to that of the cadavers. HBM responses showed good correlation with the subject response for the reaction forces, the rib strain (correlation score=0.8) and the overall kinematics. The pre-impact posture was found to greatly alter the reaction forces, deflections and the strain time histories mainly in terms of time delay.
Technical Paper
Jeff R. Crandall, Stephen M. Klisch, Gregory S. Klopp, Edwin Sieveka, Walter D. Pilkey, Peter Martin
The University of Virginia is investigating the biomechanical response and the injury tolerance of the lower extremities. This paper presents the experimental and simulation work used to study the injury patterns and mechanisms of the ankle/foot complex. The simulation effort has developed a segmented lower limb and foot model for an occupant simulator program to study the interactions of the foot with intruding toepan and pedal components. The experimental procedures include static tests, pendulum impacts, and full-scale sled tests with the Advanced Anthropomorphic Test Device and human cadavers. In these tests, the response of the lower extremities is characterized with analogous dummy and cadaver instrumentation packages that include strain gauges, electrogoniometers, angular rate sensors, accelerometers, and load cells. An external apparatus is applied to the surrogate's lower extremities to simulate the effects of muscle tensing.
Technical Paper
Richard M. Morgan, Rolf H. Eppinger, Mark P. Haffner, Narayan Yoganandan, Frank A. Pintar, Anthony Sances, Jeff R. Crandall, Walter D. Pilkey, Gregory S. Klopp, Dimitrios Kallieris, Erich Miltner, Rainer Mattem, Shashi M. Kuppa, Cheryl L. Sharpless
Sixty-three simulated frontal impacts using cadaveric specimens were performed to examine and quantify the performance of various contemporary automotive restraint systems. Test specimens were instrumented with accelerometers and chest bands to characterize their mechanical responses during the impact. The resulting thoracic injury severity was determined using detailed autopsy and was classified using the Abbreviated Injury Scale. The ability of various mechanical parameters and combinations of parameters to assess the observed injury severities was examined and resulted in the observation that belt restraint systems generally had higher injury rates than air bag restraint systems for the same level of mechanical responses. To provide better injury evaluations from observed mechanical parameters without prior knowledge of what restraint system was being used, a dichotomous process was developed.
Technical Paper
W. Scot Appel, M. Douglas LeVan, John E. Finn
Effects of a cabin-level humidity upset on an activated carbon column used for adsorption of trace compounds from air are examined through a series of experiments and computer simulations. Breakthrough curves measured for dichloromethane in the presence of water indicate that a rapid increase in relative humidity can displace large quantities of dichloromethane from the adsorbed phase resulting in effluent streams containing more than 20 times the feed concentration. Additionally, the breakthrough time for organic compounds is reduced significantly at high relative humidity. Numerical simulation results show favorable qualitative agreement with measured breakthrough curves, yet do not consistently predict accurate water or dichloromethane loadings at all experimental conditions.
Technical Paper
Rosemary Dubbeldam, Gert Nilson, Barbara Pal, Niklas Eriksson, Clare Owen, Adrian Roberts, Jeff Crandall, Gregory Hall, Paul Manning, Angus Wallace
It has been reported that lower extremity injuries represent a measurable portion of all moderate-to-severe automobile crash- related injuries. Thus, a simple tool to assist with the design of leg and foot injury countermeasures is desirable. The objective of this study is to develop a mathematical model which can predict load propagation and kinematics of the foot and leg in frontal automotive impacts. A multi-body model developed at the University of Virginia and validated for blunt impact to the whole foot has been used as basis for the current work. This model includes representations of the tibia, fibula, talus, hindfoot, midfoot and forefoot bones. Additionally, the model provides a means for tensioning the Achilles tendon. In the current study, the simulations conducted correspond to tests performed by the Transport Research Laboratory and the University of Nottingham on knee-amputated cadaver specimens.
Technical Paper
Daisuke Murakami, Seiichi Kobayashi, Toshikazu Torigaki, Richard Kent
Thoracic trauma is the principle causative factor in 30% of road traffic deaths. Researchers have developed force-deflection corridors of the thorax for various loading conditions in order to elucidate injury mechanisms and to validate the mechanical response of ATDs and numerical human models. A corridor, rather than a single response characteristic, results from the variability inherent in biological experimentation. This response variability is caused by both intrinsic and extrinsic factors. The intrinsic factors are associated with individual differences among human subjects, e.g., the differences in material properties and in body geometry. The extrinsic sources of variability include fluctuations in the loading and supporting conditions in experimental tests.
Technical Paper
Timothy C. Scott, Shan Sundaram
Simple component models are advantageous when simulating vehicle AC systems so that overall model complexity and computation time can be minimized. These models must be robust enough to avoid instability in the iteration method used for determining the AC system operating or “balance” point. Simplicity and stability are especially important when the AC system model is coupled with a vehicle interior model for studies of transient performance because these are more computationally intensive. This paper presents a semi-empirical modeling method for compressors based on dimensionless parameters. Application to some sample compressor data is illustrated. The model equations are simple to employ and will not introduce significant stability problems when used as part of a system simulation.
Technical Paper
Timothy C. Scott, Zhe Xie
One Dimensional models for front end air flows through the cooling system package are very useful for evaluating the effects of component and front end geometry changes. To solve such models for the air flow requires a robust iterative process that involves a number of non-linear sub-models. The cooling fan (s) constitute a major part of the difficulty, especially when they employ a viscous or “thermal” fan drive. This drive varies the torque coupling between the input and output shafts based on the radiator outlet air temperature. The coupling is achieved by viscous shear between two grooved disks and is regulated by a bimetal strip valve that varies the amount of fluid between the disks. This paper presents a mathematical model by which the input/output speed ratio may be determined as a function of the air temperature and input speed. Coefficients in the model are estimated from standard supplier performance information.
Technical Paper
Mark Meissner, Lex van Rooij, Kavi Bhalla, Jeff Crandall, Douglas Longhitano, Yukou Takahashi, Yasuhiro Dokko, Yuji Kikuchi
This research investigates the variation of pedestrian stance in pedestrian-automobile impact using a validated multi-body vehicle and human model. Detailed vehicle models of a small family car and a sport utility vehicle (SUV) are developed and validated for impact with a 50th percentile human male anthropometric ellipsoid model, and different pedestrian stances (struck limb forward, feet together, and struck limb backward) are investigated. The models calculate the physical trajectory of the multi-body models including head and torso accelerations, as well as pelvic force loads. This study shows that lower limb orientation during a pedestrian-automobile impact plays a dominant role in upper body kinematics of the pedestrian. Specifically, stance has a substantial effect on the subsequent impacts of the head and thorax with the vehicle. The variation in stance can change the severity of an injury incurred during an impact by changing the impact region.
Technical Paper
Lex van Rooij, Mark Meissner, Kavi Bhalla, Jeff Crandall, Douglas Longhitano, Yukou Takahashi, Yasuhiro Dokko, Yuji Kikuchi
Studies show that the pedestrian population at high risk of injury consists of both young children and adults. The goal of this study is to gain understanding in the mechanisms that lead to injuries for children and adults. Multi-body pedestrian human models of two specific anthropometries, a 6year-old child and a 50th percentile adult male, are applied. A vehicle model is developed that consists of a detailed rigid finite element mesh, validated stiffness regions, stiff structures underlying the hood and a suspension model. Simulations are performed in a test matrix where anthropometry, impact speed and impact location are variables. Bumper impact occurs with the tibia of the 50th percentile adult male and with the thigh of the 6-year-old child. The head of a 50th percentile male impacts the lower windshield, while the 6-year-old child's head impacts the front part of the hood.
Technical Paper
Richard W. Kent, James R. Funk
Biomechanical data are often assumed to be doubly censored. In this paper, this assumption is evaluated critically for several previously published sets of data. Injury risk functions are compared using simple logistic regression and using survival analysis with 1) the assumption of doubly censored data and 2) the assumption of right-censored (uninjured specimens) and uncensored (injured) data. It is shown that the injury risk functions that result from these differing assumptions are not similar and that some experiments will require a preliminary assessment of data censoring prior to finalizing the experimental design. Some types of data are obviously doubly censored (e.g., chest deflection as a predictor of rib fracture risk), but many types are not left censored since injury is a force-limiting phenomenon (e.g., axial force as a predictor of tibia fracture). Guidelines for determining the censoring for various types of experiment are presented.
Technical Paper
Aaron L. Mills, Janet S. Herman, George M. Hornberger, Roseanne M. Ford
Strategies for the inoculation of bioreactors for long-term space missions include communities of diverse composition or, alternatively, communities of a few organisms selected for their ability to efficiently catalyze reactions of interest in the reactor. The concept of functional redundancy states that in a diverse community, several different organisms may be present that are capable of effecting processes necessary to the maintenance of the system function. The concept implies that if some members of the community are lost, others will be able to keep the system from failing in the critical reactions that take place therein. In a sewage reactor in the laboratory, a diverse community at steady state was perturbed by elimination of aeration for seven days. Chemical pools (NH4+, NO3-, dissolved O2), pH, and CO2 evolution were monitored before, during, and after the perturbation.
Journal Article
Timothy C. Scott, Dhananjay S. Joshi, Frank Chianese
In 1972, the first SAE paper describing the use of computer simulation as a design tool for automotive air conditioning was written by these authors. Since then, many such simulations have been used and new tools such as CFD have been applied to this problem. This paper reviews the work over that past 35 years and presents several of the improvements in the basic component and system models that have occurred. The areas where “empirical” information is required for model support and the value of CFD cabin and external air flow modeling are also discussed.
Journal Article
Timothy C. Scott, Jason Uphold
Power steering systems provide significant design challenges. They are detrimental to fuel economy since most require the continuous operation of a hydraulic pump. This generates heat that must be dissipated by fluid lines and heat exchangers. This paper presents a simple one-dimensional transient model for power steering components. The model accounts for the pump power, heat dissipation from fluid lines, the power steering cooler, and the influence of radiation heat from exhaust system components. The paper also shows how to use a transient thermal model of the entire system to simulate the temperatures during cyclic operation of the system. The implications to design, drive cycle simulation, and selection of components are highlighted.
Technical Paper
Sang-Hyun Lee, Richard Kent
Traumatic aortic rupture (TAR) accounts for a significant mortality in automobile crashes. A numerical method by means of a mesh-based code coupling is employed to elucidate the injury mechanism of TAR. The aorta is modeled as a single-layered thick wall composed of two families of collagen fibers using an anisotropic strain energy function with consideration of viscoelasticity. A set of constitutive parameters is identified from experimental data of the human aorta, providing strict local convexity. An in vitro aorta model reconstructed from the Visible Human dataset is applied to the pulsatile blood flow to establish the references of mechanical quantities for physiological conditions. A series of simulations is performed using the parameterized impact pulses obtained from frontal sled tests.
Journal Article
Michael A. Reynolds, Carl R. Elks, Nishant George, Meenakshi Sekhar, Todd DeLong, Barry W. Johnson
Given the increased use of programmable embedded electronic systems (PEES) in automotive applications and their vital importance, it is not only important for engineers to design PEES in such a way to meet or exceed safety requirements but also quantify how “safe” these systems are. At the University of Virginia's Center for Safety-Critical Systems, we have developed a safety quantification methodology for embedded real time safety-related systems. The goal of the safety quantification methodology is to provide a generic but rigorous and systematic way of characterizing the dependability behavior of embedded systems that is applicable to a broad range of applications from automotive to nuclear. This paper presents a quantitative safety assessment methodology for safety-critical embedded systems using fault injection (FI). This methodology has been developed, refined and applied to a number of commercial safety-grade systems in the railway, nuclear and avionics industries.
Technical Paper
Varun Bollapragada, Taewung Kim, Mark Clauser, Jeff Crandall, Jason Kerrigan
Abstract Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
Journal Article
Qi Zhang, Bronislaw Gepner, Jacek Toczyski, Jason Kerrigan
Abstract While over 30% of US occupant fatalities occur in rollover crashes, no dummy has been developed for such a condition. Currently, an efficient, cost-effective methodology is being implemented to develop a biofidelic rollover dummy. Instead of designing a rollover dummy from scratch, this methodology identifies a baseline dummy and modifies it to improve its response in a rollover crash. Using computational models of the baseline dummy, including both multibody (MB) and finite element (FE) models, the dummy’s structure is continually modified until its response is aligned (using BioRank/CORA metric) with biofidelity targets. A previous study (Part I) identified the THOR dummy as a suitable baseline dummy by comparing the kinematic responses of six existing dummies with PMHS response corridors through laboratory rollover testing.
Technical Paper
David Poulard, Huipeng Chen, Matthew Panzer
Abstract Pedestrian finite element models (PFEM) are used to investigate and predict the injury outcomes from vehicle-pedestrian impact. As postmortem human surrogates (PMHS) differ in anthropometry across subjects, it is believed that the biofidelity of PFEM cannot be properly evaluated by comparing a generic anthropometry model against the specific PMHS test data. Global geometric personalization can scale the PFEM geometry to match the height and weight of a specific PMHS, while local geometric personalization via morphing can modify the PFEM geometry to match specific PMHS anatomy. The goal of the current study was to evaluate the benefit of morphed PFEM compared to globally-scaled and generic PFEM by comparing the kinematics against PMHS test results. The AM50 THUMS PFEM (v4.01) was used as a baseline for anthropometry, and personalized PFEM were created to the anthropometric specifications of two obese PMHS used in a previous pedestrian impact study using a mid-size sedan.
Technical Paper
Erik G. Takhounts, Jeff R. Crandall, Kurosh Darvish
Linear shear properties of human and bovine brain tissue were determined from transient stress-relaxation experiments and their material functions were compared. Quasi-linear viscoelastic theory was then utilized to determine material constants for bovine brain tissue subjected to large deformations. The range of applicability for linear and quasi-linear constitutive models of brain tissue was determined. A nonlinear Green-Rivlin constitutive model was subsequently applied to characterize temporal nonlinearity of bovine brain tissue in shear. Overall, 10 brain specimens from 5 fresh human cadavers and 156 brain specimens from 26 fresh bovine cadaver brains were used to quantify and compare shear brain responses under various loading conditions. The assumptions of homogeneity, isotropy, and incompressibility of brain material were made in order to reduce the required number of experiments.
Technical Paper
L. van Rooij, R. Bours, J. van Hoof, J.J. Mihm, S.A. Ridella, C.R. Bass, J.R. Crandall
Both frontal and side air bags can inflict injuries to the upper extremities in cases where the limb is close to the air bag module at the time of impact. Current dummy limbs show qualitatively correct kinematics under air bag loading, but they lack biofidelity in long bone bending and fracture. Thus, an effective research tool is needed to investigate the injury mechanisms involved in air bag loading and to judge the improvements of new air bag designs. The objective of this study is to create an efficient numerical model that exhibits both correct global kinematics as well as localized tissue deformation and initiation of fracture under various impact conditions. The development of the model includes the creation of a sufficiently accurate finite element mesh, the adaptation of material properties from literature into constitutive models and the definition of kinematic constraints at articular joint locations.
Journal Article
Daniel Perez-Rapela, Jason Forman, Haeyoung Jeon, Jeff Crandall
Abstract Current state-of-the-art vehicles implement pedestrian protection features that rely on pedestrian detection sensors and algorithms to trigger when impacting a pedestrian. During the development phase, the vehicle must “learn” to discriminate pedestrians from the rest of potential impacting objects. Part of the training data used in this process is often obtained in physical tests utilizing legform impactors whose external biofidelity is still to be evaluated. This study uses THUMS as a reference to assess the external biofidelity of the most commonly used impactors (Flex-PLI, PDI-1 and PDI-2). This biofidelity assessment was performed by finite element simulation measuring the bumper beam forces exerted by each surrogate on a sedan and a SUV. The bumper beam was divided in 50 mm sections to capture the force distribution in both vehicles. This study, unlike most of the pedestrian-related literature, examines different impact locations and velocities.
Technical Paper
Cameron Butler, Eric Loth
Abstract In recent years, there has been a growing desire to incorporate computational methods into aircraft icing certification practices. To improve understanding of ice shapes, a new experimental program in the NASA Icing Research Tunnel (IRT) will investigate swept hybrid models which are very large relative to the test section and are intended to operate at high lift coefficients. The present computations were conducted to help plan the experiments and to ascertain any effects of flow separation and unsteady forces. As they can be useful in robustly and accurately predicting large separation regions and capturing flow unsteadiness, a Detached Eddy Simulation (DES) approach has been adopted for simulating the flow over these large high-lift wing sections. The DES methodology was first validated using experimental data from an unswept NACA 0012 airfoil with leading-edge ice accretion, showing reasonable performance.
Viewing 1 to 30 of 38


  • Range:
  • Year: