Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

Rear Seat Occupant Safety: Kinematics and Injury of PMHS Restrained by a Standard 3-Point Belt in Frontal Crashes

2008-11-03
2008-22-0012
Very little experimental research has focused on the kinematics, dynamics, and injuries of rear-seated occupants. This study seeks to develop a baseline response for rear-seated post mortem human surrogates (PMHS) in frontal crashes. Three PMHS sled tests were performed in a sled buck designed to represent the interior rear-seat compartment of a contemporary midsized sedan. All occupants were positioned in the right-rear passenger seat and subjected to simulated frontal crashes with an impact speed of 48 km/h. The subjects were restrained by a standard, rear seat, 3-point seat belt. The response of each subject was evaluated in terms of whole-body kinematics, dynamics, and injury. All the PMHS experienced excessive forward translation of the pelvis resulting in a backward rotation of the torso at the time of maximum forward excursion.
X