Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Optimization of Spatially Varying Fiber Paths for a Symmetric Laminate with a Circular Cutout under Remote Uniaxial Tension

2015-09-15
2015-01-2609
Minimizing the stress concentrations around cutouts in a plate is often a design problem, especially in the Aerospace industry. A problem of optimizing spatially varying fiber paths in a symmetric, linear orthotropic composite laminate with a cutout, so as to achieve minimum stress concentration under remote unidirectional tensile loading is of interest in this study. A finite element (FE) model is developed to this extent, which constraints the fiber angles while optimizing the fiber paths, proving essential in manufacturing processes. The idea to be presented could be used to derive fiber paths that would drastically reduce the Stress Concentration Factor (SCF) in a symmetric laminate by using spatially varying fibers in place of unidirectional fibers. The model is proposed for a four layer symmetric laminate, and can be easily reproduced for any number of layers.
Technical Paper

Shape Memory Effect of TiNi Short Fiber on Mechanical Properties of TiNi/Al6061 Composite

2005-04-11
2005-01-1391
A composite of an aluminum matrix reinforced by short TiNi shape memory alloy (SMA) fibers was fabricated. The processing and thermomechanical behaviors of the composite TiNi/Al6061 were investigated experimentally and analytically. Optimal hot-pressing conditions of TiNi/Al6061 processing were identified. The shape memory effect (SME) was activated by prestraining the composite at the temperature between Ms and As, followed by heating up to Af. SME on mechanical properties, such as microhardness, yield stresses of the composite, were investigated. A computational model for the strengthening mechanism of the short fiber metal matrix composite was utilized to analyze SME on yield stress of the composite. Yield stress of the composite as a function of prestrain was predicted numerically and verified experimentally.
X