Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Numerical Investigation into the Effects of Bending Boost and Hydroforming End-Feed on the Hydroformability of DP600 Tube

2005-04-11
2005-01-0094
The work presented in this paper utilizes advanced FE models of the pre-bending and hydroforming process to investigate the effect of bending boost and hydroforming end-feed on the hydroformability of a tube. A model of a rotary-draw tube bender was used to simulate pre-bending of DP600 tube after which models of hydroforming of the pre-bent tube were run with various levels of end-feed. By varying bending boost from low (LB), medium (MB) and high (HB), consistent trends in the strain and thickness distribution within the pre-bent tubes were observed. Three end-feed levels were simulated and showed that an increase in end-feed improved formability during hydroforming. The sensitivity of the models to bending boost was shown.
Technical Paper

Damage and Formability of AKDQ and High Strength DP600 Steel Tubes

2005-04-11
2005-01-0092
Using standard tensile testing methods, the material properties of AKDQ and DP600 steels tubes along the axial direction were determined. A novel in-situ optical strain mapping system ARAMIS® was utilized to evaluate the strain distribution during tensile testing along the axial direction. Microstructural and damage characterization was carried out using microscopy and image analysis techniques to compare the damage evolution and formability of both materials. Failure in both steels was observed to occur via a ductile failure mode. AKDQ was found to be the more formable material as it can achieve higher strains, total elongations and thinning prior to failure than the higher strength DP600.
Journal Article

Estimating the Strain-Based FLC of a Tube from Straight Tube Hydroforming Experiments and Numerical Models

2008-04-14
2008-01-1442
The Extended Stress-Based Forming Limit Curve (XSFLC) failure criterion has been shown to provide good qualitative and quantitative predictions of failure (necking) in straight tube hydro forming when the on the level of end-feed (EF) used during hydro forming, the failure criterion has a tendency to over predict failure pressure at low Keeler-Brazier (K-B) approximation is used to define the XSFLC failure curve. Depending EF and under predict failure pressure for high EF. The over/under predictions suggest that the strain-space εFLC, which the XSFLC is based on, has too high of a plane-strain intercept (FLCo), when it is obtained using the K-B approximation (developed for sheet metal).
X