Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Bow-Free Tri-Component Mechanically Pre-Stressed Failure-Oriented-Accelerated-Test (FOAT) Specimen

2015-09-15
2015-01-2551
In some today's and future electronic and optoelectronic packaging systems (assemblies), including those intended for aerospace applications, the package (system's component containing active and passive devices and interconnects) is placed (sandwiched) between two substrates. In an approximate stress analysis these substrates could be considered, from the mechanical (physical) standpoint, identical. Such assemblies are certainly bow-free, provided that all the stresses are within the elastic range and remain elastic during testing and operation. Ability to remain bow-free is an important merit for many applications. This is particularly true in optical engineering, where there is always a need to maintain high coupling efficiency. The level of thermal stresses in bow-free assemblies of the type in question could be, however, rather high.
Technical Paper

Predicted Device-Degradation Failure-Rate

2015-09-15
2015-01-2555
There is a concern that the continuing trend on miniaturization (Moore's law) in IC design and fabrication might have a negative impact on the device reliability. To understand and to possibly quantify the physics underlying this concern and phenomenon, it is natural to proceed from the experimental bathtub curve (BTC) - reliability “passport” of the device. This curve reflects the combined effect of two major irreversible governing processes: statistics-related mass-production process that results in a decreasing failure rate with time, and reliability-physics-related degradation (aging) process that leads to an increasing failure rate. It is the latter process that is of major concern of a device designer and manufacturer. The statistical process can be evaluated theoretically, using a rather simple predictive model.
X