Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Analyses of Low-Frequency Motorcycle Noise Under Both Steady-State and Transient Operating Conditions

2021-08-31
2021-01-1108
This paper presents experimental investigations of diagnosing and analyzing the low-frequency, low- SNR (Signal to Noise Ratio) noise sources of three motorcycles using a hybrid technology that consists of a passive SODAR (Sonic Detection And Ranging) and modified HELS (Helmholtz Equation Least Squares) methods. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range that is consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, and sound transmission paths through arbitrarily shaped vibrating structures.
Technical Paper

Closed Loop Transaxle Synchronization Control Design

2010-04-12
2010-01-0817
This paper covers the development of a closed loop transaxle synchronization algorithm which was a key deliverable in the control system design for the L3 Enigma, a Battery Dominant Hybrid Electric Vehicle. Background information is provided to help the reader understand the history that lead to this unique solution of the input and output shaft synchronizing that typically takes place in a manual vehicle transmission or transaxle when shifting into a gear from another or into a gear from neutral when at speed. The algorithm stability is discussed as it applies to system stability and how stability impacts the speed at which a shift can take place. Results are simulated in The MathWorks Simulink programming environment and show how traction motor technology can be used to efficiently solve what is often a machine design issue. The vehicle test bed to which this research is applied is a parallel biodiesel hybrid electric vehicle called the Enigma.
Technical Paper

Automotive Hybrid System Optimization Using Dynamic Programming

2003-03-03
2003-01-0847
An automotive powertrain system consists of several interactive and linked nonlinear systems. This research focuses on the coordination of Gasoline Direct Injection (GDI) engine, transmission and emission aftertreatment systems. The goal is to design an optimal control strategy for driving performance, emissions (HC, CO, NOX), fuel economy and smoothness when switching engine mode and when shifting gears, under both discrete and continuous limitations. A multivariable control strategy is used to compromise among all powertrain subsystems to achieve optimal overall performance. A nonlinear discrete dynamic programming approach is proposed for hybrid system optimization. The complex multivariable automotive control problem is then simplified into an optimization problem. The feasibility of automotive hybrid control via the discrete dynamic programming approach is demonstrated by results from many numerical simulations under different operating conditions.
Technical Paper

Probability-Based Methods for Fatigue Analysis

1992-02-01
920661
Modern fatigue analysis techniques, that can provide reliable estimates of the service performance of components and structures, are finding increasing use in vehicle development programs. A major objective of such efforts is the prediction of the field performance of a fleet of vehicles as influenced by the host of design, manufacturing, and performance variables. An approach to this complex problem, based on the incorporation of probability theory in established life prediction methods, is presented. In this way, quantitative estimates of the lifetime distribution of a population are obtained based on anticipated, or specified, variations in component geometry, material processing sequences, and service loading. The application of this approach is demonstrated through a case study of an automotive transmission component.
Technical Paper

Control Development for an Engine-Disconnect Clutch in a Pre-Transmission Parallel Hybrid Electric Vehicle

2016-10-17
2016-01-2224
This paper details the development of the control algorithms to characterize the behavior of an electrohydraulic actuated dry clutch used in the powertrain of the Wayne State University EcoCAR 3 Pre-Transmission Parallel hybrid vehicle. The paper describes the methodology and processes behind the development of the clutch physical model and electronic control unit to support the calibration of the vehicle’s hybrid supervisory controller. The EcoCAR 3 competition challenges sixteen North American universities to re-engineer the 2016 Chevrolet Camaro to reduce its environmental impact without compromising its performance and consumer acceptability. The team is in final stages of Year Two competition, which focuses on the powertrain components integration into the selected hybrid architecture. The dry clutch used by the team to enable the coupling between the engine and the electric motor is a key component of the Pre-Transmission Parallel configuration.
Technical Paper

Offline Electro-Hydraulic Clutch Bench Testing Alternatives for a Pre-Transmission Parallel Hybrid Powertrain

2016-10-17
2016-01-2225
This paper details the development of a test-bench simulation to characterize the behavior of an electro-hydraulic actuated dry clutch used in a pre-transmission parallel hybrid powertrain architecture of Wayne State University EcoCAR 3. Engage and disengage systems play a crucial role in a pre-transmission parallel hybrid architecture. The most common device used to meet the purpose of physically connecting internal combustion engine and electric powertrains is a dry clutch. Its own characteristics and capabilities allow its usage for this application. The transition between the pure electric and hybrid modes is dictated by the main control strategy. Therefore, the engaging system will be widely used when switching from charge depleting to charge sustaining mode, and vice versa. In addition, when torque is required from both sources for higher performance, the clutch will be responsible for mechanically connecting both torque sources.
Technical Paper

Advancement and Validation of a Plug-In Hybrid Electric Vehicle Plant Model

2016-04-05
2016-01-1247
The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
Technical Paper

Development and Validation of an E85 Split Parallel E-REV

2011-04-12
2011-01-0912
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended-range hybrid electric vehicle. The competition requires participating teams to improve and redesign a stock Vue XE donated by GM. The result of this design process is an Extended-Range Electric Vehicle (E-REV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design is predicted to achieve an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an estimated all electric range of 69 km (43 miles) [1].
Technical Paper

Vehicle Design and Implementation of a Series-Parallel Plug-in Hybrid Electric Vehicle

2013-10-14
2013-01-2492
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech has achieved the Year 2 goal of producing a 65% functional mule vehicle suitable for testing and refinement, while maintaining the series-parallel plug-in hybrid architecture developed during Year 1. Even so, further design and expert consultations necessitated an extensive redesign of the rear powertrain and front auxiliary systems packaging. The revised rear powertrain consists of the planned Rear Traction Motor (RTM), coupled to a single-speed transmission. New information, such as the dimensions of the high voltage (HV) air conditioning compressor and the P2 motor inverter, required the repackaging of the hybrid components in the engine bay. The P2 motor/generator was incorporated into the vehicle after spreading the engine and transmission to allow for the required space.
Technical Paper

Development of a Willans Line Rule-Based Hybrid Energy Management Strategy

2022-03-29
2022-01-0735
The pre-prototype development of a simulated rule-based hybrid energy management strategy for a 2019 Chevrolet Blazer RS converted parallel P4 full hybrid is presented. A vehicle simulation model is developed using component bench data and validated using EPA-reported dynamometer fuel economy test data. A combined Willans line model is proposed for the engine and transmission, with hybrid control rules based on efficiency-derived engine power thresholds. Algorithms are proposed for battery state of charge (SOC) management including engine loading and one pedal strategies, with battery SOC maintained within 20% to 80% safe limits and charge balanced behavior achieved. The simulated rule-based hybrid control strategy for the hybrid vehicle has an energy consumption reduction of 20% for the Hot 505, 3.6% for the HwFET, and 12% for the US06 compared to the stock vehicle.
Technical Paper

Noise Analysis of Automotive Alternators

1999-05-17
1999-01-1712
An extensive experimental study of noise generating mechanisms of two production models of automotive alternators is presented. It was established that aerodynamic noise (generated by cooling fans) is dominating at high speeds (above 3,000 rpm), while electromagnetic noise is the most intensive at low rpm. Two directions of noise reduction are proposed and validated: reduction of noise levels generated by alternators to be achieved by using axial flow fans for cooling instead of presently used bladed discs, and radical reduction of operating speed of alternators by using variable transmission ratio accessory drives.
Technical Paper

Optimization for Plug-In Vehicles - Waste Heat Recovery from the Electric Traction Motor

2014-04-01
2014-01-1921
The Wayne State University (WSU) EcoCAR2 student team is investigating powertrain optimizations as a part of their participation in the EcoCAR2 design competition for the conversion of a 2013 Chevrolet Malibu into a plug-in hybrid. EcoCAR2 is the current three-year Department of Energy (DoE) Advanced Vehicle Technical Competition (AVTC) for 15 select university student teams competing on designing, building, and then optimizing their Plug-In Hybrid conversions of GM donated vehicles. WSU's powertrain design provides for approximately 56-64 km (35-40 miles) of electric driving before the Internal Combustion Engine (ICE) powertrain is needed. When the ICE is started, the ICE traditionally goes through a cold start with the engine, transmission, and final drive all at ambient temperature. The ICE powertrain components are most efficient when warmed up to their normal operating temperature, typically around 90-100 °C.
Technical Paper

Determining Vibro-Acoustic Characteristics and Structural Damping of an Elastic Monolithic Panel

2019-06-05
2019-01-1538
Evaluations of the dynamic and acoustic responses of panels, partitions, and walls are of concern across many industries, from building home appliances, planning meeting rooms, to designing airplanes and passenger cars. Over the past few decades, search efforts for developing new methodologies and technologies to enable NVH engineers to acquire and correlate dynamically the relationship between input excitations and vibro-acoustic responses of arbitrary-shaped panels has grown exponentially. The application of a particular methodology or technology to the evaluation of a specific structure depends intimately on the goals and objectives of the NVH engineers and industries.
Technical Paper

Development & Integration of a Charge Sustaining Control Strategy for a Series-Parallel Plug-In Hybrid Electric Vehicle

2014-10-13
2014-01-2905
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT is designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle.
X