Refine Your Search

Topic

Author

Search Results

Journal Article

The Effect of Surface Morphology of Cylinder Bore Surface on Anti-Scuffing Property made by High Pressure Die-Casting Process using Hyper-Eutectic Al-Si Alloy

2013-10-15
2013-32-9046
A monolithic type aluminum (Al) cylinder made of hypereutectic Aluminum-Silicon alloy has been widely used for motorcycle applications. It has a lightweight structure and a superior cooling ability owing to its material property and surface finishing. Usually the cylinder bore surface of the monolithic type Al cylinder is finished by an etching process or a honing process in order to expose silicon (Si) particles from aluminum (Al) matrix for the improvement of the tribological properties. The morphology of the cylinder bore surface including the exposure of Si particles is supposed to make an important effect on its tribological properties, especially on the anti-scuffing property. In this research, the anti-scuffing property of three kinds of cylinder bore finishing, an etched surface, a Si exposure honed surface and a conventional plateau honed surface is evaluated with using a reciprocated type wear tester. The experimental results are analyzed by using Weibull analysis.
Journal Article

Reduced-Order Modeling of Intake Air Dynamics in Single-Cylinder Four-Stroke Engine

2013-10-15
2013-32-9041
This study deals with reduced-order modeling of intake air dynamics in single-cylinder four-stroke naturally-aspirated spark-ignited engines without surge tanks. It provides an approximate calculation method for embedded micro computers to estimate intake manifold pressures in real time. The calculation method is also applicable to multi-cylinder engines with individual throttle bodies since the engines can be equated with parallelization of the single-cylinder engines. In this paper, we illustrate the intake air dynamics, describe a method to estimate the intake manifold pressures, and show experimental results of the method.
Journal Article

Application of Vacuum Assisted Carbide Dispersion Carbonitriding to Connecting Rods

2013-10-15
2013-32-9082
In four-cycle single-cylinder motorcycle engines, high Hertzian stress is generated on and beneath the big-end surface of the connecting rod. If the surface strength would be improved, the diameter of the big-end could be made smaller, making the entire engine smaller and lighter. Therefore, application of carbide dispersion carbonitriding using a vacuum furnace (hereinafter referred to as “vacuum CD carbonitriding”) on the big-end surface was investigated. Vacuum CD carbonitriding was carried out by three processes. The first was a CD carburizing process. This process is done to obtain granular cementite, but in order to avoid decreasing the strength, it is necessary to prevent the formation of coarsened cementite at the grain boundary. The second process was a refining process. This process is done for the purpose of refining the prior austenite grain size. The third process was a carbonitriding process.
Journal Article

Improvement of the Startability with Reverse Stroke Intake Devices for a Motorcycle Engine

2014-11-11
2014-32-0107
This paper proposes a novel engine starter system composed of a small-power electric motor and a simple mechanical valve train. The system makes it possible to design more efficient starters than conventional systems, and it is especially effective to restart engines equipped with idling stop systems. Recently, several idling stop systems, having intelligent start-up functions and highly-efficient generate capabilities have been proposed for motorcycles. One of challenges of the idling stop systems is the downsizing of electric motors for starting-up. However, there are many limitations to downsize the electric motors in the conventional idling stop systems, since the systems utilize the forward-rotational torque of the electric motors to compress the air-fuel mixture gas in the cylinders. Our studies exceeded the limitations of downsizing the electric motors by mainly using the engine combustion energy instead of the electric energy to go over the first compression top dead center.
Journal Article

Friction Measurement of Al-17%Si Monolithic Cylinder with using Newly Developed Floating Liner Device

2014-11-11
2014-32-0052
The improvement of fuel consumption is the most important issue for engine manufactures from the viewpoint of energy and environment conservation. A piston-cylinder system plays an important role for the reduction of an engine friction. For the improvement of the frictional behavior of the piston-cylinder system, it is beneficial to observe and analyze the frictional waveforms during an engine operation. To meet the above-mentioned demand, frictional waveforms were measured with using the renewed floating liner device. In the newly developed floating liner device, an actual cylinder block itself was used as a test specimen. The measured single cylinder was an aluminum monolithic type made of hypereutectic Al-17%Si alloy using a high pressure die casting process. The combined piston was a light weight forged piston and a DLC coated piston ring was used. For the measurement, 110cc air cooled single cylinder engine was used.
Journal Article

Development of Fracture-Split Connecting Rods Made of Titanium Alloy for Use on Supersport Motorcycles

2015-11-17
2015-32-0830
A connecting rod made of titanium alloy is effective for lower fuel consumption and higher power output comparing to a steel one because the titanium connecting rod enables to reduce the weight of both of reciprocating and rotating parts in an entire engine substantially. But up to now, it has been adopted only to expensive and small-lot production models because a material cost is high, a processing is difficult and a wear on a sliding area should be prevented. In order to adopt the titanium connecting rods into a more types of motorcycles, appropriate materials, processing methods and surface treatment were considered. Hot forging process was applied not only to reduce a machining volume but also to enhance a material strength and stiffness. And the fracture-splitting (FS) method for the big-end of the titanium connecting rod was put into a practical use.
Technical Paper

Motorcycle Engine Development System by Using a Test Bed with Simulation Technology

2006-11-13
2006-32-0103
With the hope of efficient and sophisticated motorcycle engine development, an engine test bed that can simulate vehicle running conditions using an ultra-low inertia motor and high response load control system was constructed, and was applied to the development of engines. By combining an exhaust gas analyzer, an exhaust gas constant volume sampler (CVS), and a data processing system, mass emissions could be measured in various test cycles. This system's advantages for data repeatability and test efficiency compared with a chassis test using a vehicle were confirmed. An acceleration test was conducted to assess running performance, and good agreement with actual driving values was confirmed. In addition, by measuring and evaluating engine response to throttle manipulation, it was possible to evaluate driveability on the test bed. These test findings indicate that this test bed can simulate vehicle driving tests with the engine only and will be a useful tool in engine development.
Technical Paper

Application of Chaos Theory to Engine Systems

2008-09-09
2008-32-0010
We focus on the control issue for engine systems from the perspective of chaos theory, which is based on the fact that engine systems have a low-dimensional chaotic dynamics. Two approaches are discussed: controlling chaos and harnessing chaos, respectively. We apply Pyragas' chaos control method to an actual engine system. The experimental results show that the chaotic motion of an engine system may be stabilized to a periodic motion. Alternatively, harnessing chaos for engine systems is addressed, which regards chaos as an essential dynamic mode for the engine.
Technical Paper

Analysis of Cyclic Variations of Combustion in High Compression Ratio Boosted D.I.S.I. Engine by Ion-Current Probes and CFD

2009-04-20
2009-01-1484
Regarding S.I. gasoline engine, it is one of the most important matters to eliminate cyclic variation of combustion. Especially with high compression ratio and high boosted engine, the difficulties increase more. This paper describes the analysis of combustion process precisely by using many ion-current probes and CFD with the unique approaches. The number of used ion-current probes is 80 and they are mounted on whole combustion chamber wall especially including moving intake and exhaust valve faces. Thus cyclic variations of flame propagation can be measured precisely under high compression ratio and high boosted conditions in a multi-cylinder engine. In addition, CFD combustion simulation is conducted through full four strokes of continuous nine cycles. Moreover air motion and pressure vibration in intake and exhaust manifolds in whole cycles are considered. These unique approaches have made CFD result correspond to the measurement result of cyclic variations of actual combustion.
Technical Paper

Study of bonded valve-seat system (BVS)

2000-06-12
2000-05-0144
The Bonded Valve Seat System is the latest technology to realize drastic reduction in valve temperature in SI engines characterized by the good thermal conductivity of extremely thin valve seats bonded directly on the aluminum cylinder head. A unique and highly rationalized resistance bonding technique was developed to maintain adequate bonding strength and positioning precision in a short bonding period of around one second. Engineering data on optimization of bonding-section geometry, valve seat material and the surface treatment and bonding parameters were presented and discussed regarding the mechanism. The geometry of the bonding section of the cylinder head was optimized by FEM analysis so that the aluminum material should deform to embed the valve seat ring with the action of expelling the surface contamination and the oxide film. The bonding facility was modified so that the electrode axis should move flexibly according to distortion of the cylinder head during bonding.
Technical Paper

Fuel Injection System for Small Motorcycles

2003-09-15
2003-32-0084
Attempts have been made to develop an electronically controlled fuel injection system that is ideal for small motorcycles, cost-efficient, compact, and electric power-saving while maintaining accuracy. For reducing the number of sensors and cost, highly accurate methods have been developed for the measurement of intake air mass, detection of acceleration, distinction of engine stroke, and estimation of atmospheric pressure without using a throttle position sensor, cam timing sensor, and barometric sensor in such a manner as to carry out sampling with the intake manifold pressure of single-cylinder engines synchronizing with the crank angle. For compactness and electric power saving, an injector and in-tank fuel pump module have been developed for small motorcycles.
Technical Paper

Flow, Combustion and Emissions in a Five-Valve Research Gasoline Engine

2001-09-24
2001-01-3556
The in-cylinder flow, mixture distribution, combustion and exhaust emissions in a research, five-valve purpose-built gasoline engine are discussed on the basis of measurements obtained using laser Doppler velocimetry (LDV), fast spark-plug hydrocarbon sampling, flame imaging and NOx/HC emissions using fast chemiluminescent and flame ionisation detectors/analysers. These measurements have been complemented by steady flow testing of various cylinder head configurations, involving single- and three-valve operation, in terms of flow capacity and in-cylinder tumble strength.
Technical Paper

Analyses of Cycle-to-Cycle Variation of Combustion and In-Cylinder Flow in a Port Injection Gasoline Engine Using PIV and PLIF Techniques

2017-10-08
2017-01-2213
Reduction in the cycle-to-cycle variation (CCV) of combustion in internal combustion engines is required to reduce fuel consumption, exhaust emissions, and improve drivability. CCV increases at low load operations and lean/dilute burn conditions. Specifically, the factors that cause CCV of combustion are the cyclic variations of in-cylinder flow, in-cylinder distributions of fuel concentration, temperature and residual gas, and ignition energy. However, it is difficult to measure and analyze these factors in a production engine. This study used an optically accessible single-cylinder engine in which combustion and optical measurements were performed for 45 consecutive cycles. CCVs of the combustion and in-cylinder phenomena were investigated for the same cycle. Using this optically accessible engine, the volume inside the combustion chamber, including the pent-roof region can be observed through a quartz cylinder.
Technical Paper

The Investigation of Mixture Formation and Combustion with Port Injection System by Visualization of Flame and Wall Film

2011-08-30
2011-01-1887
Mixture formation is one of the most important factors for the combustion in the spark ignition engine with port fuel injection. The relation between combustion and mixture quality, however, is not quantitatively well established. In this study, the connection of combustion and mixture formation was explored with various measurement techniques. Borescopes were used in order to investigate the flame propagation in the combustion chamber and behavior of spray and fuel film on the wall in the intake port. For the purpose of investigation on the effect of mixture formation, various port fuel injection systems and parameters were tested and compared: direction, timing, and size of droplet. An SI engine for small vehicle was used under condition of 4 000 rpm. The investigation by images obtained has shown that inhomogeneity of mixture causes low combustion stability, especially due to direct introduction of fuel droplets into the combustion chamber.
Technical Paper

Reduction of Disagreeable Idle Sound in Two-Stroke Engines

1993-03-01
930981
A periodic impulsive sound at idle is occasionally described as ‘disagreeable’ in two-stroke engines. The relation between combustion conditions, piston vibrations, and the disagreeable sound is analyzed to clarify the phenomena. Some means to alleviate disagreeable sound are then proposed through stabilized combustion, high rigidity sound transfer systems, and refined skirt profiles. Experimental results are shown for the effects on main three factors evaluating disagreeable sound-loudness, impulsiveness, and frequency characteristics. In addition, piston behavior is measured, and the relation between piston motion and disagreeable sound is discussed in this paper.
Technical Paper

An Experimental Study of Connecting Rod Big Ends

1995-02-01
950202
Connecting rod design factors, such as geometric shape, capscrew torque and materials can significantly affect bore distortion and assembly stress. In this paper, experiments using different materials were conducted on several connecting rod big-ends with various shapes, bosses and bolts. The results show that the distortion of the big-end bore and the bolt stress are influenced considerably by the big-end shape, the bolt axial tension and the material under inertia force. It was also observed that the bolt bending stress and the load separating the big-end joint surface could be calculated with high accuracy using three-dimensional FEM in the initial connecting rod design.
Technical Paper

Development of Fracture Splitting Method for Case Hardened Connecting Rods

2004-09-27
2004-32-0064
The fracture splitting (FS) method for case hardened connecting rods has been developed to improve engine performance while decreasing production costs. The FS method is widely used for automotive connecting rods because it effectively improves their productivity. Normalized forging steels, microalloyed forging steels and powder metals have generally been used as the material in the FS method as they are easily split due to their brittleness. On the other hand, the materials to be used for high performance motorcycles are case hardened low carbon steels because they allow the connecting rods to be lightweight due to their high fatigue strengths. These materials, which have a hardened area of approx. 0.5mm in depth from the surface, have a ductile texture inside. This texture obstructs the crack propagation and makes the split force too high to split without deforming the bearing area.
Technical Paper

The Control of the Primary Inertia Force and Moments Produced in Engines with Three Cylinders or Less

1968-02-01
680023
All the primary inertia forces and/or moments generated by engines having three cylinders or less are not normally in balance by themselves and thus may be a great source of vibration for the frame supporting the engine. If the mass distribution of the crankwebs is selected in a proper manner, it is possible to determine arbitrarily the directions and the length ratio of principal axes of ellipses, which are obtained as Lissajous diagrams of inertia force and moment. This method can be effectively applied to reduce vibration in the frames. In this paper the appropriate inertia force and moment ellipse equations are developed and the analysis is outlined for optimizing the engine balance. Also the fundamental properties of the linear vibration systems excited by the elliptical forces as well as some experimental examples of elliptical excitation are detailed.
Technical Paper

On the Theory of Orthogonal Engine Mount System and Its Application to Motorcycles

1983-02-01
830088
By orthogonalizing the primary inertia moment vector produced by an engine with many engine vectors, a new engine mounting method called “the orthogonal engine mount system” was designed. This paper explains its theoretical background. In addition, a motorcycle with a two-cylinder engine incorporating this system was analyzed by means of modal analysis and building block approach techniques to determine the effectiveness of the orthogonal engine mount system.
Technical Paper

L.D.V. Measurements of Pipe Flows in a Small-Two-Cycle Spark-lgnition Engine

1984-02-01
840425
A laser Doppler velocimeter is used to measure in real time the velocities of pipe flows in a crankcase-scavenged small two-cycle engine with piston and reed valves. Consequently the optical windows in each pipe must be exchanged instantly by using rotary window systems. The flows in both the inlet and exhaust pipes show different patterns in the motored and firing conditions, but the flows in the scavenging pipe are in a similar pattern regardless of the operating conditions.
X