Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Friction Measurement of Al-17%Si Monolithic Cylinder with using Newly Developed Floating Liner Device

2014-11-11
2014-32-0052
The improvement of fuel consumption is the most important issue for engine manufactures from the viewpoint of energy and environment conservation. A piston-cylinder system plays an important role for the reduction of an engine friction. For the improvement of the frictional behavior of the piston-cylinder system, it is beneficial to observe and analyze the frictional waveforms during an engine operation. To meet the above-mentioned demand, frictional waveforms were measured with using the renewed floating liner device. In the newly developed floating liner device, an actual cylinder block itself was used as a test specimen. The measured single cylinder was an aluminum monolithic type made of hypereutectic Al-17%Si alloy using a high pressure die casting process. The combined piston was a light weight forged piston and a DLC coated piston ring was used. For the measurement, 110cc air cooled single cylinder engine was used.
Technical Paper

Study on Characteristics of Gasoline Fueled HCCI Using Negative Valve Overlap

2006-11-13
2006-32-0047
Gasoline fueled Homogeneous Charge Compression Ignition (HCCI) combustion with internal exhaust gas re-circulation using Negative Valve Overlap (NOL) was investigated by means of calculation and experiment in order to apply this technology to practical use with sufficient operating range and with acceptable emission and fuel consumption. In this paper we discuss the basic characteristics of NOL-HCCI with emphasis on the influence of intake valve timing on load range, residual gas fraction and induction air flow rate. Emission and fuel consumption under various operation conditions are also discussed. A water-cooled 250cc single cylinder engine with a direct injection system was used for this study. Three sets of valve timing were selected to investigate the effect of intake valve opening duration. Experimental results demonstrated that an engine speed of approximately 2000rpm yields an NMEP (Net Mean Effective Pressure) range from 200kPa to 400kPa.
Technical Paper

Analysis of Cyclic Variations of Combustion in High Compression Ratio Boosted D.I.S.I. Engine by Ion-Current Probes and CFD

2009-04-20
2009-01-1484
Regarding S.I. gasoline engine, it is one of the most important matters to eliminate cyclic variation of combustion. Especially with high compression ratio and high boosted engine, the difficulties increase more. This paper describes the analysis of combustion process precisely by using many ion-current probes and CFD with the unique approaches. The number of used ion-current probes is 80 and they are mounted on whole combustion chamber wall especially including moving intake and exhaust valve faces. Thus cyclic variations of flame propagation can be measured precisely under high compression ratio and high boosted conditions in a multi-cylinder engine. In addition, CFD combustion simulation is conducted through full four strokes of continuous nine cycles. Moreover air motion and pressure vibration in intake and exhaust manifolds in whole cycles are considered. These unique approaches have made CFD result correspond to the measurement result of cyclic variations of actual combustion.
Technical Paper

Analyses of Cycle-to-Cycle Variation of Combustion and In-Cylinder Flow in a Port Injection Gasoline Engine Using PIV and PLIF Techniques

2017-10-08
2017-01-2213
Reduction in the cycle-to-cycle variation (CCV) of combustion in internal combustion engines is required to reduce fuel consumption, exhaust emissions, and improve drivability. CCV increases at low load operations and lean/dilute burn conditions. Specifically, the factors that cause CCV of combustion are the cyclic variations of in-cylinder flow, in-cylinder distributions of fuel concentration, temperature and residual gas, and ignition energy. However, it is difficult to measure and analyze these factors in a production engine. This study used an optically accessible single-cylinder engine in which combustion and optical measurements were performed for 45 consecutive cycles. CCVs of the combustion and in-cylinder phenomena were investigated for the same cycle. Using this optically accessible engine, the volume inside the combustion chamber, including the pent-roof region can be observed through a quartz cylinder.
Technical Paper

The Investigation of Mixture Formation and Combustion with Port Injection System by Visualization of Flame and Wall Film

2011-08-30
2011-01-1887
Mixture formation is one of the most important factors for the combustion in the spark ignition engine with port fuel injection. The relation between combustion and mixture quality, however, is not quantitatively well established. In this study, the connection of combustion and mixture formation was explored with various measurement techniques. Borescopes were used in order to investigate the flame propagation in the combustion chamber and behavior of spray and fuel film on the wall in the intake port. For the purpose of investigation on the effect of mixture formation, various port fuel injection systems and parameters were tested and compared: direction, timing, and size of droplet. An SI engine for small vehicle was used under condition of 4 000 rpm. The investigation by images obtained has shown that inhomogeneity of mixture causes low combustion stability, especially due to direct introduction of fuel droplets into the combustion chamber.
Technical Paper

Reduction of Friction Loss through the Use of Rolling Big-End Bearings

1995-09-01
951793
We compared motoring friction loss, output performance at WOT (wide open throttle) and specific fuel consumption of big-end bearings on engines having identical specifications between the case of using plain bearings and rolling bearings to investigate the effect of the lubricating oil supply rate on these parameters in an attempt to improve output through reduction of friction loss for big-end bearings of small, high-output motorcycle engines. Testing was performed using a 125 cc, 4-cycle, single cylinder engine at high engine speeds mainly above 10,000 rpm.
Technical Paper

Optimization of Multi-Valve Four Cycle Engine Design-The Benefit of Five-Valve Technology

1986-02-01
860032
THE MULTI-VALVE FOUR STROKE CYCLE engine design trend is Coward increased engine power and higher fuel efficiency. While a four-valve system is the most common direction, problems occur when the valve area is widened by increasing the cylinder bore for a higher engine output. The layout of four larger valves causes the combustion chamber shape to flatten and the combustion time period to increase. In pursuit of the optimum multi-valve engine we have studied four, five, six and seven-valve per cylinder design. Performance targets and design constraints led us toward the successful five-valve engine technology. This technology develops high engine torque and efficient combustion over a wide range of engine speeds.
Technical Paper

Combustion Noise of Two-Stroke Gasoline Engines and its Reduction Techniques

1989-05-01
891125
In order to obtain more reduction of two-stroke motorcycle engine noise than usual, it becomes necessary to make improvements within the combustion process itself. This study was carried out for two objectives. One is the investigation of the relationship between combustion and noise, and the other one is the development of noise reduction techniques. As the result, it was discovered that there was a significant correlation between engine noise and (dP/dθ)max, called the maximum rate of cylinder pressure rise. Therefore, the reduction of the (dP/dθ) max was recognized to be effective for engine noise reduction. The optimized alteration of combustion chamber shape is the most effective noise reduction technique, because it is able to reduce (dP/dθ) max without any sacrifice of engine power. In fact, the level of noise reduction can be predicted by one of the parameters obtained from the combustion chamber shape.
Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

2002-10-29
2002-32-1773
A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
Technical Paper

Influence of Injection and Flame Propagation on Combustion in Motorcycle Engine - Investigation by Visualization Technique

2011-11-08
2011-32-0566
This paper reports visualization of behavior of spray, wall film, and initial flame propagation in an SI engine with port fuel injection system for motorcycle in order to directly investigate their influences on combustion and relations among them. Borescopes were used to visualize the flame propagation in the combustion chamber and wall film in the intake port. Various injection systems and injection parameters were tested: injection direction, timing, and size of droplets to investigate the effect of mixture formation. It is concluded that combustion stability under low load condition is greatly influenced by mixture inhomogeneity in the combustion chamber whose evidence is the luminous emission. It is caused by direct induction of considerable amount of liquid fuel with large size of droplets into combustion chamber or too inhomogeneous mixture in the intake port.
X