Refine Your Search

Topic

Search Results

Journal Article

Torque Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt Continuous Variable Transmission

2013-10-15
2013-32-9042
This paper concerns a torque control of a rear wheel of a motorcycle equipped with a rubber/aramid belt electronically-controlled continuous variable transmission where a primary sheave position is controlled by an electric motor. In particular, the paper discusses a method to calculate a required engine torque and a required primary sheave position, given reference values of a rear-wheel torque and an engine rotational velocity. The method forms a foundation of a hierarchized traction control where a higher control layer decides an optimal motorcycle motion (rear-wheel torque and engine rotational velocity) and a lower control layer realizes the motion by actuators (engine torque and primary sheave position). Difficulties of the control are due to large mechanical compliance of the rubber/aramid belt, which leads to an inevitable lag from the primary sheave position to a speed reduction ratio.
Journal Article

Development of New Concept Two-Wheel Steering System for Motorcycles

2013-10-15
2013-32-9106
This paper describes the development of a new concept two-wheel steering system for realizing motorcycle motion control. By considering the whole of the main frame as the rear-wheel steering axis, it was possible to move the rear-wheel steering system from the conventional installation position at the rear arm to the head pipe. As a result, the developed two-wheel steering system is both lightweight and compact. This two-wheel steering system was installed in a motorcycle, and starting and stopping tests were carried out with two people riding on the motorcycle. The test results confirmed that the two-wheel steering system is capable of changing the motion characteristics of the motorcycle in actual riding. Furthermore, by calculating the equivalent wheel alignment of this system, this paper also theoretically demonstrates that these changes in motion characteristics are caused by changes in caster and trail.
Journal Article

Improvement of the Startability with Reverse Stroke Intake Devices for a Motorcycle Engine

2014-11-11
2014-32-0107
This paper proposes a novel engine starter system composed of a small-power electric motor and a simple mechanical valve train. The system makes it possible to design more efficient starters than conventional systems, and it is especially effective to restart engines equipped with idling stop systems. Recently, several idling stop systems, having intelligent start-up functions and highly-efficient generate capabilities have been proposed for motorcycles. One of challenges of the idling stop systems is the downsizing of electric motors for starting-up. However, there are many limitations to downsize the electric motors in the conventional idling stop systems, since the systems utilize the forward-rotational torque of the electric motors to compress the air-fuel mixture gas in the cylinders. Our studies exceeded the limitations of downsizing the electric motors by mainly using the engine combustion energy instead of the electric energy to go over the first compression top dead center.
Journal Article

Steering Damper for Street Motorcycle

2013-03-25
2013-01-0111
We introduce a research on steering dampers using MR fluid (Magnetorheological Fluid). In recent years, steering dampers have been used in on-road and off-road motorcycles. Steering dampers stabilize the front end of motorcycles. The advantage of a steering damper is increased stability, but hydraulic steering dampers give rise to the problem of ‘Heavy Steering’. In order to resolve this heavy steering, we need to set the restrictions on the maximum damping force and avoid it from interfering when the rider is steering. However only reducing the damping force will lead to insufficient damping force when the handle, unresponsive because of kickback, shakes. We solved this problem with the development of an electric control damper which generates sufficient damping force at low steering angle rates and also allows for mechanically limiting the maximum damping force.
Journal Article

Relation between the Weave Mode in Low Speed Range and Slalom Running of Motorcycles

2012-10-23
2012-32-0122
Recently, our research has focused on the weave mode. This is a representative vibration mode of motorcycles and is important when considering maneuverability and stability. In a method of analyzing the weave mode, a disturbance is applied to the handle bars of the motorcycle during running and then the response waveform of the roll angle and other items at that time is used to perform estimations. However, when the motorcycle is driven at low speeds, the steering operations of the rider have a large effect on the running data and this makes estimation difficult. Therefore, it was assumed that weave mode data can be estimated from slalom running data since this possesses almost the same vibration frequency as the weave mode in low speed range. In this research, a simulation was used to investigate the relationship between the weave mode and slalom running.
Technical Paper

Motorcycle Engine Development System by Using a Test Bed with Simulation Technology

2006-11-13
2006-32-0103
With the hope of efficient and sophisticated motorcycle engine development, an engine test bed that can simulate vehicle running conditions using an ultra-low inertia motor and high response load control system was constructed, and was applied to the development of engines. By combining an exhaust gas analyzer, an exhaust gas constant volume sampler (CVS), and a data processing system, mass emissions could be measured in various test cycles. This system's advantages for data repeatability and test efficiency compared with a chassis test using a vehicle were confirmed. An acceleration test was conducted to assess running performance, and good agreement with actual driving values was confirmed. In addition, by measuring and evaluating engine response to throttle manipulation, it was possible to evaluate driveability on the test bed. These test findings indicate that this test bed can simulate vehicle driving tests with the engine only and will be a useful tool in engine development.
Technical Paper

Fuel Injection System for Small Motorcycles

2003-09-15
2003-32-0084
Attempts have been made to develop an electronically controlled fuel injection system that is ideal for small motorcycles, cost-efficient, compact, and electric power-saving while maintaining accuracy. For reducing the number of sensors and cost, highly accurate methods have been developed for the measurement of intake air mass, detection of acceleration, distinction of engine stroke, and estimation of atmospheric pressure without using a throttle position sensor, cam timing sensor, and barometric sensor in such a manner as to carry out sampling with the intake manifold pressure of single-cylinder engines synchronizing with the crank angle. For compactness and electric power saving, an injector and in-tank fuel pump module have been developed for small motorcycles.
Technical Paper

Light Body for Small Vehicles Using High-Quality Die-Casting Component

2003-10-27
2003-01-2869
A high-quality die-casting technology has been developed for lightweight aluminum frame structures that produces high-strength aluminum parts that are also weldable. This new technology has been used in casting frames for motorcycles and snowmobiles and has enabled improved frame designs with far fewer component parts than was possible before. This die-casting technology also results in a significant reduction in energy consumption during the manufacturing process.
Technical Paper

Development of Magnetostriction-type Load Sensor for Measurement System Using Motorcycle Testing Robot

2002-03-04
2002-01-1073
A control system for auto driving of motorcycle using anthropomorphic robot has been developed to efficiently evaluate a motorcycle with high accuracy, the performance of which is becoming higher. For magnetostriction-type load sensor, which is absolutely necessary for this system, the strain gauge type load cell has been used conventionally. However, the detection sensitivity, strength, and responsibility have not been satisfied completely under engine vibration conditions. To solve this problem, a magnetostriction-type load sensor has been newly developed. As a result of the tests with actual machines, it is found that this magnetostriction-type load sensor satisfies the conditions necessary for the motorcycle drive control system and measurement system.
Technical Paper

Reduction of Circuit Inductance in Motor Controllers for Electric Vehicles

2003-01-15
2003-32-0065
1 Research was conducted on reduction of circuit inductance for the purpose of reducing the surge voltage generated during switching by FET (field effect transistor / semiconductor device) in the power modules of motor controllers for golf carts (Fig. 1) and other electric vehicles. The motor control system is composed of the battery, the motor controller, the motor, and the wirings that connect them, and the inductance exists in them altogether. It became clear from simulation analysis and measurements from a prototype that only the inductance within the motor controller among these composition parts influences the surge voltage. And it became clear that there is a correlation between surge voltage and the sum of the inductance of the electrolytic capacitor inside the power module and the inductance of the circuit by which current is supplied from the electrolytic capacitor to the FET.
Technical Paper

Development of Compact Continuously Variable Transmission Engine for Motorcycles

2011-08-30
2011-01-2030
The continuously variable transmission (CVT) with a rubber belt used in scooters is also regarded as a potential automatic transmission mechanism for conventional motorcycles. By making this system more compact and building it into the engine, a motorcycle CVT engine has been developed that is about the same size as a manual transmission (MT) engine. During driving with a CVT, heat is generated by friction at the sheaves, and therefore it was necessary to secure a certain length of belt to ensure that external air flows efficiently to the sheaves. However, making the CVT more compact restricted the belt length, which decreased cooling performance and increased the number of bends in the belt, making it difficult to maintain durability. To address this issue, a plastic resin drive belt and newly designed sheaves were adopted, and durability of more than that of a scooter was achieved.
Technical Paper

Motorcycle Crash Test Modelling

1993-11-01
933133
This paper concerns the development and validation of a three-dimensional mathematical model representing a motorcycle with rider. As part of this development, several motorcycle to barrier tests were performed at the laboratories of the TNO Crash-Safety Research Centre and several measurements were carried out, including measurements to determine the inertia properties of the motorcycle segments. Results of two full scale tests involving a passenger car were then applied to validate the model in a more realistic crash environment. The resulting MADYMO motorcycle model consists of 7 bodies linked to each other by joints and spring-damper type elements. Special attention was given to the mathematical representation of front fork, front wheel and gastank. A 50th %ile Part 572 dummy with pedestrian pelvis and legs represented the rider. For representation in the model an existing dummy database was updated.
Technical Paper

Effect by Fuel Cut with the Strong Hybrid Motorcycle to Improve the Fuel Consumption

2012-10-23
2012-32-0086
Any improvements of the fuel economy with engines are always required for all petroleum fuel vehicles. The goal of such improvements must lead to reduce fuel consumption of the engines. However it may cause some deterioration with riding feeling that is one of the most important characteristics of the motorcycles. Yamaha has developed the strong hybrid motorcycle "HV-X"(hereafter the motorcycle). The motorcycle consists of a 4-stroke 250 cm₃ a cylinder engine and two 300V AC motors with a planetary gear set. The motorcycle reduces fuel consumption without severe influence onto the drive performance by utilizing the electric power.
Technical Paper

Development of Fracture Splitting Method for Case Hardened Connecting Rods

2004-09-27
2004-32-0064
The fracture splitting (FS) method for case hardened connecting rods has been developed to improve engine performance while decreasing production costs. The FS method is widely used for automotive connecting rods because it effectively improves their productivity. Normalized forging steels, microalloyed forging steels and powder metals have generally been used as the material in the FS method as they are easily split due to their brittleness. On the other hand, the materials to be used for high performance motorcycles are case hardened low carbon steels because they allow the connecting rods to be lightweight due to their high fatigue strengths. These materials, which have a hardened area of approx. 0.5mm in depth from the surface, have a ductile texture inside. This texture obstructs the crack propagation and makes the split force too high to split without deforming the bearing area.
Technical Paper

Some Development Aspects of Two-Stroke Cycle Motorcycle Engines

1966-02-01
660394
This paper describes aspects of YAMAHA 2 cycle, high speed, high output engines. Generally speaking, in order to obtain good results in developing engine performance, high delivery ratios and high thermal and mechanical efficiencies are essential. In addition to these, the most suitable cooling and lubricating systems must be employed. YAMAHA has developed a separate and automatic lubrication system for 2-cycle gasoline engines, which keeps YAMAHA engines well lubricated.
Technical Paper

On the Theory of Orthogonal Engine Mount System and Its Application to Motorcycles

1983-02-01
830088
By orthogonalizing the primary inertia moment vector produced by an engine with many engine vectors, a new engine mounting method called “the orthogonal engine mount system” was designed. This paper explains its theoretical background. In addition, a motorcycle with a two-cylinder engine incorporating this system was analyzed by means of modal analysis and building block approach techniques to determine the effectiveness of the orthogonal engine mount system.
Technical Paper

Motorcycles and Noise

1985-11-11
852234
Motorcycles have been widely used as private transportation means, but are now confronted with difficult situations to meet increasingly stringent noise control regulations which requires various noise abatement technologies. Manufacturers, on the other hand, are required to produce totally balanced motorcycles overcoming restrictions in space, weight, etc. To cope with this situation, utilization of high techniques for measurement and analysis of noise is indispensable including those for detection of noise sources in order to take effective noise abatement measures. Well balanced motorcycles must be protected from tampering or improper maintenance, and it is essential that noise control regulations must be technologically feasible in view of the situation in each country.
Technical Paper

Practical Application of CAE to the Design of Motorcycles

1989-09-01
891774
In product development of motorcycles, application of CAN at the initial design stage is more necessary than ever to ensure the reliability of the product and also to shorten the lead time of product development. Finite element method (FEM) plays a crucial role in this respect. In the application of FEM to the development of small vehicles, such as motorcycles, analysis must he carried out in a short period and at a low cost. However, FEM requires complex operations and therefore, designers have been unable to use this method satisfactorily. In order to improve these matters, we have developed a system, called STAGE-FEM, which enable the engineers to make FEM models of components of motorcycle and to evaluate the analysis results easily.
Technical Paper

Application of Vibration Simulation Methods to the Design of Motorcycles

1989-09-01
891994
Recently it is becoming more necessary than ever to carry out performance prediction and factor analysis at the initial design by-computer aided engineering (CAE), in order to ensure the high performance, safety and reliability of motorcycles and also to shorten the lead time of product development. Finite element method (FEM) plays a crucial role in this respect. In particular, since the vibration characteristic is one of the most important evaluation items, the demand for accurate vibration prediction at the initial design has become much more intense. In recent years, vibration simulation methods have achieved remarkable progress, and especially the substructural synthesis method (SSM), combined with FEM, is used as an effective tool for the requirements.
Technical Paper

Analysis of the Behavior of Liquid in a Fuel Tank

1988-11-01
881782
The behavior of the liquid in the motorcycle fuel tank is an interesting theme from the viewpoint of the fuel meter construction, as effected by variance in the fuel pressure resulting from acceleration or deceleration, etc. It can be assumed that the behavior of the liquid in the fuel tank will be affected by the running pattern, the shape and capacity of the fuel tank, etc. Here is a report on an experiment recently made to observe how the liquid behaves in a partially fully enclosed tank. We simplified the tank shape and the involved conditions (to actually observe the behavior of the inside liquid by the suspension method.) Then we have analized the effectes according to different liquid containers, to different velocities, and to different liquid volumes as well as the time history variance in the internal pressure.
X