Refine Your Search

Topic

Author

Search Results

Video

Exhaust Particle Sensor for OBD Application

2012-02-16
This session covers topics regarding new CI and SI engines and components. This includes analytical, experimental, and computational studies covering hardware development as well as design and analysis techniques. Presenter Joshua Styron, Ford Motor Co.
Technical Paper

Reversible Sulfur Poisoning of 3-way Catalyst linked with Oxygen Storage Mechanisms

2021-09-05
2021-24-0069
Even though the 3-way catalyst chemistry has been studied extensively in the literature, some performance aspects of practical relevance have not been fully explained. It is believed that the Oxygen Storage Capacity function of 3-way catalytic components dominates the behavior during stoichiometry transitions from lean to rich mode and vice versa whereas a number of mathematical models have been proposed to describe the dynamics of pollutant conversion. Previous studies have suggested a strong impact of Sulfur on the pollutant conversion after a lean to rich transition, which has not been adequately explained and modelled. Lean to rich transitions are highly relevant to catalyst ‘purging’ needed after exposure to high O2 levels (e.g. after fuel cut-offs). This work presents engine test measurements with an engine-aged catalyst that highlight the negative impact of Sulfur on pollutant conversion after a lean to rich transition.
Technical Paper

Model-based optimization methods of combined DPF+SCR Systems

2007-09-16
2007-24-0098
The design of integrated exhaust lines that combine particulate and NOx emission control is a multidimensional optimization problem. The present paper demonstrates the use of an exhaust system simulation platform which is composed of well-established multidimensional mathematical models for the transient thermal and chemical phenomena in DOC, DPF and SCR systems as well as connecting pipe heat transfer effects. The analysis is focused on the European Driving Cycle conditions. Illustrative examples on complete driving cycle simulations with and without forced regeneration events are presented for alternative design approaches. The results illustrate the importance of DOC and DPF heat capacity effects and connecting pipe heat losses on the SCR performance. The possibility of combining DPF and SCR functionality on a single wall-flow substrate is studied.
Technical Paper

Metal Foam Substrate for DOC and DPF Applications

2007-04-16
2007-01-0659
A new metal foam material for diesel particulate filtration, trademarked as INCOFOAM® HighTemp, was recently presented. Extensive tests showed the potential of achieving filtration efficiencies of the order of 85% or more at low pressure drop using a radial flow design concept with graded foam porosity. By applying a catalytic washcoat, the foam exhibits enhanced gas mixing and thus higher conversion efficiencies at high space velocities. In addition, due to an excellent soot-catalyst contact, the washcoated foam exhibited high catalytic regeneration rates. The present paper focuses on a novel “cross-flow” design concept for a better filtration/pressure drop trade-off as well as application of the foam as an oxidation catalyst substrate. The experimental testing starts from small-scale reactors and proceeds to real exhaust testing on the engine bench as well as vehicle tests on the chassis dynamometer and on-road testing.
Technical Paper

Control Strategies for Peak Temperature Limitation in DPF Regeneration Supported by Validated Modeling

2007-04-16
2007-01-1127
One of the main challenges in developing cost-effective diesel particulate filters is to guarantee a thermally safe regeneration under all possible conditions on the road. Uncontrolled regenerations occur when the soot reaction rate is so high that the cooling effect of the incoming exhaust gas is insufficient to keep the temperature below the required limit for material integrity. These conditions occur when the engine switches to idle while the filter is already hot enough to initiate soot oxidation, typically following engine operation at high torque and speed or active filter regeneration. The purpose of this work is to investigate engine management techniques to reduce the reaction rate during typical failure mode regenerations. A purely experimental investigation faces many difficulties, especially regarding measurement accuracy, repeatability in filter soot loading, and repeatability in the regeneration protocol.
Technical Paper

Model-based Optimization of Catalyst Zoning in Diesel Particulate Filters

2008-04-14
2008-01-0445
Catalyzed wall-flow particulate filters are increasingly applied in diesel exhaust after-treatment for multiple purposes, including low-temperature catalytic regeneration, CO and hydrocarbon conversion, as well as exothermic heat generation during forced regeneration. In order to optimize Precious Metals usage, it may be advantageous to apply the catalytic coating non-uniformly in the DPF, a technology referred to as “catalyst zoning”. In order to simulate the behavior of such a filter, one has to consider coupled transport-reaction modeling. In this work, a previously developed model is calibrated versus experimental data obtained with full-scale catalyzed filters on the engine dynamometer. In a next step, the model is validated under a variety of operating conditions using engine experiments with zoned filters. The performance of the zoned catalyst is analyzed by examining the transient temperature and species profiles in the inlet and outlet channels.
Technical Paper

Development of Metal Foam Based Aftertreatment System on a Diesel Passenger Car

2008-04-14
2008-01-0619
An alternative metal foam substrate for exhaust aftertreatment applications has been recently presented and characterized. The present paper focuses on the potential of the metal foam technology as an efficient DOC and CDPF substrates on real-world conditions. The target platform is a mid-size passenger car and the methodology includes both modeling and experiments. The experimental testing starts from small-scale reactor characterization of the basic heat/mass transfer properties and chemical kinetics. The results show that the foam structure exhibits excellent mass-transport properties offering possibilities for precious metal and catalyst volume savings for oxidation catalyst applications. These results are also used to calibrate an advanced 2-dimensional model which is able to predict the transient filtration and reaction phenomena in axial and radial flow systems.
Technical Paper

Experimental Evaluation of the Fuel Consumption and Emissions Reduction Potential of Low Viscosity Lubricants

2009-06-15
2009-01-1803
Reducing fuel consumption and emissions from road transport is a key factor for tackling global warming, promoting energy security and sustaining a clean environment. Several technical measures have been proposed in this aspect amongst which the application of low viscosity engine lubricants. Low viscosity lubricants are considered to be an interesting option for reducing fuel consumption (and CO2 emissions) throughout the fleet in a relatively cost effective way. However limited data are available regarding their actual “real-world” performance with respect to CO2 and other pollutant emissions. This study attempts to address the issue and to provide experimental data regarding the benefit of low viscosity lubricants on fuel consumption and CO2 emissions over both the type-approval and more realistic driving cycles.
Technical Paper

The Effect of Biodiesel on PAHs, Nitro-PAHs and Oxy-PAHs Emissions from a Light Vehicle Operated Over the European and the Artemis Driving Cycles

2009-06-15
2009-01-1895
This study examines the effects of neat soy-based biodiesel (B100) and its 50% v/v blend (B50) with low sulphur automotive diesel on vehicle PAH emissions. The measurements were conducted on a chassis dynamometer with constant volume sampling (CVS) according to the European regulated technique. The vehicle was a Euro 2 compliant diesel passenger car, equipped with a 1.9 litre common-rail turbocharged direct injection engine and an oxidation catalyst. Emissions of PAHs, nitro-PAHs and oxy-PAHs were measured over the urban phase (UDC) and the extra-urban phase (EUDC) of the type approval cycle (NEDC). In addition, for evaluating realistic driving performance the non-legislated Artemis driving cycles (Urban, Road and Motorway) were used. Overall, 12 PAHs, 4 nitro-PAHs, and 6 oxy-PAHs were determined. The results indicated that PAH emissions exhibited a reduction with biodiesel during all driving modes.
Technical Paper

Flow Maldistribution Effects on DPF Performance

2009-04-20
2009-01-1280
This paper focuses on some of the DPF system design issues where 3-dimensional modeling is necessary. The study is based on an existing 3-dimensional DPF model (axitrap) which is coupled to a commercial CFD code (Star-CD, CD-Adapco). The main focus is the effect of the inlet pipe geometry on soot distribution in the filter during loading and regeneration mode. The results show that due to the self-balancing effect, the resulting soot distribution in the filter under typical loading modes with low flow rates is quite uniform. With the assumption of adiabatic inlet pipe, the effect of non-symmetric inlet pipe is also negligible even during regeneration. However, under the realistic assumption of a non-adiabatic inlet pipe, the effect of inlet pipe geometry becomes very significant. Especially, for the case of a bent-shaped inlet pipe, the risk of impartial regeneration of the filter increases significantly.
Technical Paper

Optimization Methodologies for DPF Substrate-catalyst Combinations

2009-04-20
2009-01-0291
As the Diesel Particulate Filter (DPF) technology is nowadays established, research is currently focusing on meeting the emission and durability requirements by proper system design. This paper focuses on the optimum combination between the catalytic coating and substrate structural properties using experimental and simulation methodologies. The application of these methodologies will be illustrated for the case of SiC substrates coated with innovative sol-gel coatings. Coated samples are characterized versus their uncoated counterparts. Multi-dimensional DOC and DPF simulation models are used to study several effects parametrically and increase our understanding on the governing phenomena. The comparative analysis of DOC/DPF systems covers filtration – pressure drop characteristics, CO/HC/NO oxidation performance, effect of washcoat amount and catalyst dispersion on oxidation activity and finally passive regeneration performance.
Technical Paper

Design and Application of Catalyzed Metal Foam Particulate Filters

2006-10-16
2006-01-3284
This paper presents experimental and modeling results related to the application of a novel material as a diesel particulate filter substrate. The material, trademarked as INCOFOAM® HighTemp, is a Ni-based superalloy foam. The material can be produced in sheet form with a large range of microstructure parameters. Thanks to the mechanical properties of the sheets, they can be flexibly shaped in various forms. The foam can be washcoated with active catalytic material to promote regeneration. The experimental testing covers flow and pressure drop behavior with air and exhaust gas, filtration efficiency measurements as function of particle size and regeneration rate measurements. The testing starts from mini-scale reactors and proceeds to real exhaust testing on the engine bench as well as vehicle tests with legislated driving cycles. Special emphasis is given to the characterization of the foam as a catalyst substrate.
Technical Paper

Handling Performance of a Vehicle Equipped with an Actively Controlled Differential

2011-05-17
2011-01-1557
Vehicle handling is heavily influenced by the torque distribution to the driving wheels. This work presents a newly developed differential, designed to actively control the driving torque distribution to the wheels. The new device incorporates an electric machine, which can operate either as a motor or generator. A control unit monitors signals from various sources in the vehicle, such as steering angle, yaw acceleration and wheel rotational speed. Then, a control algorithm takes into account the steering angle rate and the vehicle speed in order to determine the suitable difference between output torque values. The handling improvement capabilities are evaluated by simulating in ADAMS/Car the driving behavior of a vehicle equipped with the new differential. The model that has been used to simulate vehicle handling is that of a Formula SAE type racing car.
Technical Paper

A Modeling Study of Soot and De-NOx Reaction Phenomena in SCRF Systems

2011-06-09
2011-37-0031
The development of thermally durable zeolite NH3/Urea-SCR formulations coupled with that of high porosity filters substrates has opened the way to integrate PM and NOx control into a single device, namely an SCR-coated Diesel Particulate Filter (SCRF). A few experimental works are already present in the literature regarding SCRF systems, mainly addressing the DeNOx performances of the system (in both presence and absence of soot) under both steady state and transient conditions. The purpose of the present work is to perform a simulation study focused on phenomena which are expected to play key roles in SCRF systems, such as coupling of reaction and diffusion phenomena, soot effect on DeNOx activity, SCR coating effect on soot regeneration and filtration efficiency and competition between soot oxidation and DeNOx processes involving NO2.
Technical Paper

Modeling the Interactions Of Soot and SCR Reactions in Advanced DPF Technologies with Non-homogeneous Wall Structure

2012-04-16
2012-01-1298
The pressure for compact and efficient deNO systems has led to increased interest of incorporating SCR coatings in the DPF walls. This technology could be very attractive especially if high amounts of washcoat loadings could be impregnated in the DPF porous walls, which is only possible with high porosity filters. To counterbalance the filtration and backpressure drawbacks from such high porosity applications, the layered wall technology has already been proposed towards minimizing soot penetration in the wall and maximizing filtration efficiency. In order to deal with the understanding of the complex interactions in such advanced systems and assist their design optimization, this paper presents an advanced modeling framework and selected results from simulation studies trying to illustrate the governing phenomena affecting deNO performance and passive DPF regeneration in the above combined systems.
Technical Paper

Filtration and Regeneration Performance of a Catalyzed Metal Foam Particulate Filter

2006-04-03
2006-01-1524
The objective of this study is to present a particulate filter concept, based on a new porous material: INCOFOAM® HighTemp, a Ni-based superalloy foam. The paper examines the filtration and pressure drop characteristics as well as the regeneration performance of different filter configurations, based on experimental data and modeling. A number of different foam structures with variable pore characteristics are studied. The experimental testing covers flow and pressure drop behavior with air and exhaust gas, filtration efficiency measurements as function of particle size and regeneration rate measurements. The testing starts from mini-scale reactors and proceeds to real exhaust testing on the engine bench as well as vehicle tests on the chassis dynamometer and on-road. In parallel, a previously developed mathematical model is applied to study and understand the filtration and pressure drop mechanisms in the case of clean and soot loaded filters.
Technical Paper

Transient Modeling of 3-Way Catalytic Converters

1994-03-01
940934
The modeling of transient phenomena occurring inside an automotive 3-way catalytic converter poses a significant challenge to the emissions control engineer. Since the significant progress that has been observed with steady-state models cannot be directly exploited in this direction, it is necessary to develop a fully transient model and computer code incorporating dynamic behaviour of the three way catalytic converter in a relatively simple and effective way. The Laboratory of Applied Thermodynamics (LAT), Aristotle University Thessaloniki, is cooperating with the Engine Direction of FIAT Research Center, in the development of a computer code fulfilling these objectives, within the framework of an EEC Brite EuRam cost shared project. The CRF and LAT modeling approaches, along with the underlying philosophy and experimental work, are presented in this paper.
Technical Paper

Trap Protection by Limiting A/F Ratio During Regeneration

1995-02-01
950366
The purpose of this paper is to investigate a new, universally applicable technique to protect the filter from overheating that could overcome the need for trap bypassing; namely, the trap protection by limiting A/F ratio during regeneration. The technique is supported by control of A/F ratio, leading to an indirect control of exhaust oxygen content and consequently trap regeneration rate. Realisation of the above-mentioned, very simple idea, so as to work effectively in the multitude of possible trap failure scenarios occuring during vehicle driving, is shown to be a fairly complicated task. The new method of trap protection, now being at the stage of initial investigations, is expected to lead to a safe and reliable system with wide applicability, without the need to bypass the trap at any circumstances. As such, it will also be attractive for passenger car applications, supported by the recent advances in wide application of electronic fuel control.
Technical Paper

Computer Aided Assessment of Catalyst Ageing Cycles

1995-02-01
950934
In view of recent and future US and european regulations the design optimization of 3-way catalytic converters (3WCC) should also account for catalyst durability. The purpose of this paper is to extend the authors' approach for 3WCC modeling and evaluation in the direction of covering some aspects of ageing behavior. After a brief examination of the commonly accepted ageing mechanisms, a new methodology for the assessment of catalyst durability is formulated. This methodology takes into account the effect of thermal loading, high-temperature oxidation and poisoning of the catalyst. Based on the approach presented, along with the 3WCC and other related models and computer codes already in-use by the authors, a comparative assesment of engine bench ageing cycles may be computationally supported. Correlation of vehicle ageing cycles with engine bench cycles may also be accomplished as illustrated by a case study.
Technical Paper

Computer Aided Engineering in the Design of Catalytically Assisted Trap Systems

1997-02-24
970472
The design of a diesel particulate trap system to fit a specific vehicular application requires significant expenditure, due to the high degree of interaction between the vehicle operation and trap behavior. The assistance of modeling in the design process is already well established. This paper presents the basic principles of a Computer Aided Engineering methodology aimed to assist the selection of the basic parameters of a Diesel Particulate Trap System by reducing the number of the necessary experimental tests. The computational modules currently supporting the CAE methodology are based on fundamental mathematical models, incorporating a small number of semi-empirical relations derived by experimental data on trap loading and catalytic regeneration, exhaust system heat transfer and trap backpressure effect on fuel consumption.
X