Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Tire Models for Vehicle Dynamic Simulation and Accident Reconstruction

2009-04-20
2009-01-0102
Various vehicle dynamic simulation software programs have been developed for use in reconstructing accidents. Typically these are used to analyze and reconstruct preimpact and postimpact vehicle motion. These simulation programs range from proprietary programs to commercially available packages. While the basic theory behind these simulations is Newton's laws of motion, some component modeling techniques differ from one program to another. This is particularly true of the modeling of tire force mechanics. Since tire forces control the vehicle motion predicted by a simulation, the tire mechanics model is a critical feature in simulation use, performance and accuracy. This is particularly true for accident reconstruction applications where vehicle motions can occur over wide ranging kinematic wheel conditions. Therefore a thorough understanding of the nature of tire forces is a necessary aspect of the proper formulation and use of a vehicle dynamics program.
Technical Paper

The Tire-Force Ellipse (Friction Ellipse) and Tire Characteristics

2011-04-12
2011-01-0094
The tire-force ellipse and tire-force circle (more frequently referred to as the friction ellipse and the friction circle, respectively) have been used for many years to qualitatively illustrate the concept of tire-road force interaction, particularly the force-limiting behavior for combined braking and steering (combined tire forces). Equations of the tire-force circle/ellipse, or, more specifically, the force limit envelope, in its idealized form have also been used in the development of quantitative models of combined tire forces used in vehicle dynamic simulation software. Comparisons of this idealized tire-force circle/ellipse using a simple bilinear tire force model and using actual tire data show that it provides only a limited, simplified notion of combined tire forces due to its lack of dependence upon the slip angle and traction slip.
Technical Paper

Uncertainty of CRASH3 ΔV and Energy Loss for Frontal Collisions

2012-04-16
2012-01-0608
This research investigates the uncertainty in the calculation of the change in velocity, ΔV, and the crush energy, EC, due to variations in the computed values of crush stiffness coefficients, A and B (d₀ and d₁), and due to variations in the measurements of the residual crush, Ci, i = 1,...6, using the CRASH3 damage algorithm. An understanding of the nature of such uncertainties is of particular importance as both the ΔV and EC are frequently used as inputs to reconstruction methods and become variations in the reconstruction process. These variations lead to uncertainties in the results of the reconstruction which are generally the preimpact speed of one or both of the vehicles involved in the collision. This paper consists of three parts. The first investigates the uncertainty associated with the calculation of the stiffness coefficients A and B (d₀ and d₁).
Journal Article

Analysis of High-Speed Sideswipe Collisions Using Data from Small Overlap Tests

2014-04-01
2014-01-0469
Little experimental data have been reported in the crash reconstruction literature regarding high-speed sideswipe collisions. The Insurance Institute for Highway Safety (IIHS) conducted a series of high-speed, small overlap, vehicle-to-barrier and vehicle-to-vehicle crash tests for which the majority resulted in sideswipe collisions. A sideswipe collision is defined in this paper as a crash with non-zero, final relative tangential velocity over the vehicle-to-barrier or vehicle-to-vehicle contact surface; that is, sliding continues throughout the contact duration. Using analysis of video from 50 IIHS small overlap crash tests, each test was modeled using planar impact mechanics to determine which were classified as sideswipes and which were not. The test data were further evaluated to understand the nature of high-speed, small overlap, sideswipe collisions and establish appropriate parameter ranges that can aid in the process of accident reconstruction.
Book

Vehicle Accident Analysis and Reconstruction Methods, Second Edition

2011-04-12
Designed for the experienced practitioner, this new book aims to help reconstruction specialists with problems they may encounter in everyday analysis. The authors demonstrate how to take the physics behind accidents out of the idealized world and into practical situations. Real-world examples are used to illustrate the methods, clarify important concepts, and provide practical applications to those working in the field. Thoroughly revised, this new edition builds on the original exploration of accident analysis, reconstruction, and vehicle design. Enhanced with new material and improved chapters on key topics, an expanded glossary of automotive terms, and a bibliography at the end of the book providing further reading suggestions make this an essential resource reference for engineers involved in litigation, forensic investigation, automotive safety, and crash reconstruction.
X