Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Changes to Fim-Motogp Rules to Reduce Costs and Make Racing More Directly Relevant to Road Motorcycle Development

2008-12-02
2008-01-2957
The specific power densities and therefore the level of sophistication and costs of FIM-MOTOGP engines 800 cm3 in capacity have reached levels similar to those of the traditionally much more expensive FIA-Formula One engines and some racing developments have no application at all in the development of production bikes. The aim of the paper is therefore to review FIM-MOTOGP engine rules and make recommendations that could reduce costs and make racing more directly relevant to the development of production bikes while enhancing the significant interest in technical innovation by the sports' fans.
Technical Paper

E-KERS Energy Management Crucial to Improved Fuel Economy

2016-09-18
2016-01-1947
The operation of a conventional passenger car is characterised by increasing or maintaining the kinetic energy, when accelerating or cruising the vehicle, and reducing the kinetic energy by using the brakes. While the energy taken by the friction brakes to slow the vehicle is dissipated into heat, the introduction of Kinetic Energy Recovery Systems (KERS) has permitted the recovery of part of the braking energy. This reduces the amount of energy needed from the internal combustion engine (ICE). The contribution reviews the latest developments in electric KERS (E-KERS), with emphasis to round trip efficiency wheels to wheels and electrification of the powertrain. The contribution considers the opportunity to connect the E-KERS traction battery to other electric machines, such as an electrically assisted turbocharger (E-TC) connected to a motor/generator unit, or an electric water pump (EWP), to further optimise the vehicle operation.
Technical Paper

Reduced Warm-Up and Recovery of the Exhaust and Coolant Heat with a Single Loop Turbo Steamer Integrated with the Engine Architecture in a Hybrid Electric Vehicle

2013-11-27
2013-01-2827
The paper considers a novel waste heat recovery (WHR) system integrated with the engine architecture in a hybrid electric vehicle (HEV) platform. The novel WHR system uses water as the working media and recovers both the internal combustion engine coolant and exhaust energy in a single loop. Results of preliminary simulations show a 6% better fuel economy over the cold start UDDS cycle only considering the better fuel usage with the WHR after the quicker warm-up but neglecting the reduced friction losses for the warmer temperatures over the full cycle.
Technical Paper

Experimental and Numerical Analysis of Engine Gas Exchange, Combustion and Heat Transfer during Warm-Up

2008-06-23
2008-01-1653
This paper presents experimental and computational results obtained on an in line, six cylinder, naturally aspirated, gasoline engine. Steady state measurements were first collected for a wide range of cam and spark timings versus throttle position and engine speed at part and full load. Simulations were performed by using an engine thermo-fluid model. The model was validated with measured steady state air and fuel flow rates and indicated and brake mean effective pressures. The model provides satisfactory accuracy and demonstrates the ability of the approach to produce fairly accurate steady state maps of BMEP and BSFC. However, results show that three major areas still need development especially at low loads, namely combustion, heat transfer and friction modeling, impacting respectively on IMEP and FMEP computations. Satisfactory measurement of small IMEP and derivation of FMEP at low loads is also a major issue.
X