Criteria

Display:

Results

Viewing 1 to 30 of 81
HISTORICAL
2003-01-11
Standard
AIR910B
The purpose of this report is to provide information on ozone, its effects, generally accepted ozone exposure limits (aviation and non-aviation), and methods of its control in high altitude aircraft. Sources of information are listed and referenced in the text.
HISTORICAL
1996-07-01
Standard
AIR910A
The purpose of this report is to provide information on ozone and its control in high altitude aircraft environmental systems. Sources of this information are listed in the selected bibliography appearing at the end of this report, to which references are made throughout.
CURRENT
2011-10-17
Standard
AIR910C
The purpose of this report is to provide information on ozone, its effects, generally accepted ozone exposure limits (aviation and non-aviation), and methods of its control in high altitude aircraft. Sources of information are listed and referenced in the text.
HISTORICAL
1965-11-01
Standard
AIR910
The purpose of this report is to provide information on ozone and its control in high altitude aircraft environmental systems. Sources of this information are listed in the selected bibliography appearing at the end of this report, to which references are made throughout.
CURRENT
2017-01-05
Standard
AIR5661A
This SAE Aerospace Information Report (AIR) provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
HISTORICAL
2010-02-12
Standard
AIR5661
This report provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
HISTORICAL
1964-02-01
Standard
AIR805
The purpose of this information report is to present factors which affect the design and development of jet blast windshield rain removal systems for commercial transport aircraft. A satisfactory analytical approach to the design of these systems has not yet been developed. Although detailed performance data are available for some test configurations, rain removal systems will generally be unique to specific aircraft. This, then, requires a preliminary design for the system based on available empirical data to be followed with an extensive laboratory development program.
HISTORICAL
1986-10-01
Standard
AIR1706A
Many different computer programs have been developed to determine performance capabilities of aircraft environmental control systems, and to calculate size and weight tradeoffs during preliminary design. Many of these computer programs are limited in scope to a particular arrangement of components for a specific application. General techniques, providing flexibility to handle varied types of ECS configurations and different requirements (i.e., during conceptual or preliminary design, development, testing, production, and operation) are designated "company proprietary" and are not available for industry-wide use. This document describes capabilities, limitations, and potentials of a particular computer program which provides a general ECS analysis capability, and is available for use in industry. This program, names AECS1, was developed under the sponsorship of the U.S. Air Force Flight Dynamics Laboratory (References 1 and 2).
HISTORICAL
2011-02-10
Standard
AIR1706
This document has been declared “CANCELLED” as of January 2010. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index.
HISTORICAL
1997-10-01
Standard
AIR1706B
Many different computer programs have been developed to determine performance capabilities of aircraft environmental control systems, and to calculate size and weight tradeoffs during preliminary design. Many of these computer programs are limited in scope to a particular arrangement of components for a specific application. General techniques, providing flexibility to handle varied types of ECS configurations and different requirements (i.e., during conceptual or preliminary design, development, testing, production, and operation) are designated “company proprietary” and are not available for industry-wide use. This document describes capabilities, limitations, and potentials of a particular computer program which provides a general ECS analysis capability, and is available for use in industry. This program, names AECS1, was developed under the sponsorship of the U.S. Air Force Flight Dynamics Laboratory (References 1 and 2).
CURRENT
2010-01-08
Standard
AIR1706C
This document has been declared “CANCELLED” as of January 2010. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index.
CURRENT
2005-02-09
Standard
AIR4766/2
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: Airborne contaminant gases, vapors, and aerosols. Identified potential sources. Comfort, health and safety issues. Airborne chemical measurement. Regulations and standards. Operating conditions and equipment that may cause aircraft cabin contamination by airborne chemicals (including Failure Conditions and normal Commercial Practices). Airborne chemical control systems. It does not deal with airflow requirements.
2014-09-26
WIP Standard
AIR4766/2A
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: - Airborne contaminant gases, vapors, and aerosols. - Identified potential sources. - Comfort, health and safety issues. - Airborne chemical measurement. - Regulations and standards. - Operating conditions and equipment that may cause aircraft cabin contamination by airborne chemicals (including Failure Conditions and normal Commercial Practices). - Airborne chemical control systems. It does not deal with airflow requirements.
CURRENT
2007-11-19
Standard
AIR4766
This SAE Aerospace Information Report (AIR) provides information on air quality and some of the factors affecting the perception of cabin air quality in commercial aircraft cabin air. Also a typical safety analysis process utilizing a Functional Hazard Assessment approach is discussed.
CURRENT
2005-02-18
Standard
AIR4766/1
This SAE Aerospace Information Report (AIR) covers airbone particulate contaminants that may be present in commercial aircraft cabin air during operation. Discussions cover sources of contaminants, methods of control and design recommendations. Air quality, ventilation requirements and standards are also discussed.
HISTORICAL
2007-03-22
Standard
ARP1796A
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, installation environment and design considerations for military and commercial aircraft systems within the Air Transport Association (ATA) ATA 100 specification, Chapter 36, Pneumatic. This ATA system/chapter covers equipment used to deliver compressed air from a power source to connecting points for other systems such as air conditioning, pressurization, ice protection, cross-engine starting, air turbine motors, air driven hydraulic pumps, on board oxygen generating systems (OBOGS), on board inert gas generating systems (OBIGGS), and other pneumatic demands. The engine bleed air system includes components for preconditioning the compressed air (temperature, pressure or flow regulation), ducting to distribute high or low pressure air to the using systems, and sensors/instruments to indicate temperature and pressure levels within the system.
HISTORICAL
1952-02-01
Standard
ARP266
This recommended practice is written to cover the installation of combustion heaters used in the following applications.
CURRENT
2001-04-01
Standard
ARP266A
To provide a recommended practice covering the recommended safety and performance practices found desirable in service in the installation of combustion heaters, as specified in Society of Automotive Engineers Aeronautical Standard AS143 and certain auxiliary devices which are considered necessary to the safety and performance of the heaters as used in certain aircraft.
CURRENT
2010-05-11
Standard
ARP1270B
This ARP covers the basic criteria for the design of cabin pressure control systems (CPCS) for general aviation, commercial and military pressurized aircraft.
2017-04-10
WIP Standard
ARP1270C
This ARP covers the basic criteria for the design of cabin pressure control systems (CPCS) for general aviation, commercial and military pressurized aircraft.
HISTORICAL
1980-06-01
Standard
ARP1623
These recommendations apply to the user's manual for any computer program pertaining to aircraft ECS. This includes computer programs for: Cabin air conditioning and pressurization performance. Avionics equipment cooling system performance. Engine bleed air system performance. Compartment and equipment thermal analysis. Environmental protection system performance. These recommendations apply to user's manuals for generalized computer programs as well as those for a specific component or system.
CURRENT
1997-10-01
Standard
ARP1623A
The purpose of this recommended practice is to provide aircraft industry with guidelines as to the pertinent information which should be contained in a user's manual for an environmental control system (ECS) computer program. This recommended practice is intended to facilitate the preparation of a user's manual without unduly restricting its format or content.
HISTORICAL
1999-11-01
Standard
AIR1168/13
This part of the manual presents methods for arriving at a solution to the problem of spacecraft inflight equipment environmental control. The temperature aspect of this problem may be defined as the maintenance of a proper balance and integration of the following thermal loads: equipment-generated, personnel-generated, and transmission through external boundary. Achievement of such a thermal energy balance involves the investigation of three specific areas: Establishment of design requirements. Evaluation of properties of materials. Development of analytical approach. The solution to the problem of vehicle and/or equipment pressurization, which is the second half of major environmental control functions, is also treated in this section. Pressurization in this case may be defined as the task associated with the storage and control of a pressurizing fluid, leakage control, and repressurization.
HISTORICAL
1994-01-01
Standard
AIR1168/14
A life support system (LSS) is usually defined as a system that provides elements necessary for maintaining human life and health in the state required for performing a prescribed mission. The LSS, depending upon specific design requirements, will provide pressure, temperature, and composition of local atmosphere, food, and water. It may or may not collect, dispose, or reprocess wastes such as carbon dioxide, water vapor, urine, and feces. It can be seen from the preceding definition that LSS requirements may differ widely, depending on the mission specified, such as operation in Earth orbit or lunar mission. In all cases the time of operation is an important design factor. An LSS is sometimes briefly defined as a system providing atmospheric control and water, waste, and thermal management. The major subsystems required to accomplish the general functions mentioned above are: Breathing and pressurization gas storage system. Temperature and humidity control system.
CURRENT
2011-07-25
Standard
AIR1168/13A
This part of the manual presents methods for arriving at a solution to the problem of spacecraft inflight equipment environmental control. The temperature aspect of this problem may be defined as the maintenance of a proper balance and integration of the following thermal loads: equipment-generated, personnel-generated, and transmission through external boundary. Achievement of such a thermal energy balance involves the investigation of three specific areas: Establishment of design requirements. Evaluation of properties of materials. Development of analytical approach. The solution to the problem of vehicle and/or equipment pressurization, which is the second half of major environmental control functions, is also treated in this section. Pressurization in this case may be defined as the task associated with the storage and control of a pressurizing fluid, leakage control, and repressurization.
CURRENT
2012-10-15
Standard
AIR1168/14A
A life support system (LSS) is usually defined as a system that provides elements necessary for maintaining human life and health in the state required for performing a prescribed mission. The LSS, depending upon specific design requirements, will provide pressure, temperature, and composition of local atmosphere, food, and water. It may or may not collect, dispose, or reprocess wastes such as carbon dioxide, water vapor, urine, and feces. It can be seen from the preceding definition that LSS requirements may differ widely, depending on the mission specified, such as operation in Earth orbit or lunar mission. In all cases the time of operation is an important design factor. An LSS is sometimes briefly defined as a system providing atmospheric control and water, waste, and thermal management. The major subsystems required to accomplish the general functions mentioned above are: Breathing and pressurization gas storage system. Temperature and humidity control system.
HISTORICAL
2001-08-01
Standard
AIR1168/2
Heat transfer is the transport of thermal energy from one point to another. Heat is transferred only under the influence of a temperature gradient or temperature difference. The direction of heat transfer is always from the point at the higher temperature to the point at the lower temperature, in accordance with the second law of thermodynamics. The fundamental modes of heat transfer are conduction, convection, and radiation. Conduction is the net transfer of energy within a fluid or solid occurring by the collisions of molecules, atoms, or electrons. Convection is the transfer of energy resulting from fluid motion. Convection involves the processes of conduction, fluid motion, and mass transfer. Radiation is the transfer of energy from one point to another in the absence of a transporting medium. In practical applications several modes of heat transfer occur simultaneously.
CURRENT
2011-07-25
Standard
AIR1168/2A
Heat transfer is the transport of thermal energy from one point to another. Heat is transferred only under the influence of a temperature gradient or temperature difference. The direction of heat transfer is always from the point at the higher temperature to the point at the lower temperature, in accordance with the second law of thermodynamics. The fundamental modes of heat transfer are conduction, convection, and radiation. Conduction is the net transfer of energy within a fluid or solid occurring by the collisions of molecules, atoms, or electrons. Convection is the transfer of energy resulting from fluid motion. Convection involves the processes of conduction, fluid motion, and mass transfer. Radiation is the transfer of energy from one point to another in the absence of a transporting medium. In practical applications several modes of heat transfer occur simultaneously.
CURRENT
2011-07-25
Standard
AIR1168/5A
Like the technologies to which it contributes, the science of instrumentation seems to be expanding to unlimited proportions. In considering instrumentation techniques, primary emphasis was given in this section to the fundamentals of pressure, temperature, and flow measurement. Accent was placed on common measurement methods, such as manometers, thermocouples, and head meters, rather than on difficult and specialized techniques. Icing, humidity, velocity, and other special measurements were touched on briefly. Many of the references cited were survey articles or texts containing excellent bibliographies to assist a more detailed study where required.
Viewing 1 to 30 of 81