Refine Your Search

Search Results

Viewing 1 to 2 of 2
Standard

Adaptive Cruise Control (ACC) Operating Characteristics and User Interface

2014-09-25
HISTORICAL
J2399_201409
Adaptive cruise control (ACC) is an enhancement of conventional cruise control systems that allows the ACC-equipped vehicle to follow a forward vehicle at a pre-selected time gap, up to a driver selected speed, by controlling the engine, power train, and/or service brakes. This SAE Standard focuses on specifying the minimum requirements for ACC system operating characteristics and elements of the user interface. This document applies to original equipment and aftermarket ACC systems for passenger vehicles (including motorcycles). This document does not apply to heavy vehicles (GVWR > 10,000 lbs. or 4,536 kg). Furthermore, this document does not address other variations on ACC, such as “stop & go” ACC, that can bring the equipped vehicle to a stop and reaccelerate. Future revisions of this document should consider enhanced versions of ACC, as well as the integration of ACC with Forward Vehicle Collision Warning Systems (FVCWS).
Standard

Driver-Vehicle Interface Considerations for Lane Keeping Assistance Systems

2016-02-24
HISTORICAL
J3048_201602
The purpose of this document is to provide guidance for the implementation of driver-vehicle interfaces (DVI) for intervention-type lane keeping assistance systems (LKAS), as defined by ISO 11270. LKAS provide support for safe lane keeping operations by drivers via momentary intervention in lane keeping actions, but do not automate part or all of the dynamic driving task on a sustained basis (see SAE J3016). Thus they are not classified as a driving automation system per SAE J3016 - Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems, nor do they prevent possible lane or roadway departures, as drivers can always override an LKAS intervention and road conditions may be such that they cannot support an LKAS intervention (e.g., too slippery, curve to tight, lateral velocity too high, etc.).
X