Criteria

Text:
Display:

Results

Viewing 1 to 24 of 24
CURRENT
2014-05-16
Standard
AIR6160
This document provides informational background, rationale and a technical case to allow consideration of the removal of the magnesium alloy restriction in aircraft seat construction as contained in AS8049B. The foundation of this argument is flammability characterization work performed by the FAA at the William J. Hughes Technical Center (FAATC), Fire Safety Branch in Atlantic City, New Jersey, USA. The rationale and detailed testing results are presented along with flammability reports that have concluded that the use of specific types of magnesium alloys in aircraft seat construction does not increase the hazard level potential in the passenger cabin in a post-crash fire scenario. Further, the FAA has developed a lab scale test method, reference DOT/FAA/TC-13/52, to be used as a certification test, or method of compliance (MOC) to allow acceptability of the use of magnesium in the governing TSO-C127 and TSO-C39C.
2016-06-07
WIP Standard
AIR6908
This document provides informational background, rationale, and data (both physical testing and computer simulations) used in defining the component test methods and acceptance criteria described in SAE Aerospace Recommended Practice (ARP) 6330. ARP 6330 defines multiple test methods uses to assess the effect of seat back mounted IFE monitor changes on head blunt trauma.
2017-01-12
WIP Standard
ARP5765B
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations §14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample v-ATD calibration report.
CURRENT
2015-12-04
Standard
ARP5765A
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations §14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample v-ATD calibration report.
HISTORICAL
2012-10-03
Standard
ARP5765
This SAE Aerospace Recommended Practice (ARP) defines a means of assessing the credibility of computer models of aircraft seating systems used to simulate dynamic impact conditions set forth in Federal Regulations 14 CFR Part 23.562, 25.562, 27.562, and 29.562. The ARP is applicable to lumped mass and detailed finite element seat models. This includes specifications and performance criteria for aviation specific virtual anthropomorphic test devices (v-ATDs). A methodology to evaluate the degree of correlation between a seat model and dynamic impact tests is recommended. This ARP also provides testing and modeling best practices specific to support the implementation of analytical models of aircraft seat systems. Supporting information within this document includes procedures for the quantitative comparison of test and simulation results, as well as test reports for data generated to support the development of v-ATDs and a sample report.
2016-10-07
WIP Standard
ARP6909
This SAE XXX defines acceptable methods for determining the seat reference point (SRP), and the documentation requirements for that determination, for passenger and crew seats in Transport Aircraft, Civil Rotorcraft and General Aviation Aircraft.
2017-10-02
WIP Standard
ARP6963
Define an objective criteria for serious injury inflicted on an occupant (passenger) following an emergency landing (CFR 25.561/25.562). The document herein is limited to evaluation of the CFR 25.785 (b) & (d), which encompasses the potential sharp edge formation caused by the test dummy’s head striking the seat and/or other structures (shroud, monitor, handset, glass from monitor, etc).
2014-11-18
WIP Standard
ARP6337
Define and develop test parameters, test methods, measurements, and acceptable performance criteria for composite aircraft seat structures.
2014-05-27
WIP Standard
ARP6330
Methods will be developed to characterize In Flight Entertainment (IFE) component impact performance separate from seat design. These methods will address both initial seat head impact criterion (HIC) testing and subsequent IFE component changes. Methods will evaluate head blunt trauma, post-impact sharp edges, and egress impediment. Criteria development will involve defining test methods, test parameters, measurements, and acceptance criteria. Particular emphasis on evaluating IFE changes that require coordination and evaluation per SAE ARP 6448, Appendix B.
HISTORICAL
1965-04-20
Standard
ARP750
The purpose of this Aerospace Recommended Practice (ARP) is to provide design criteria that will lead to seat designs which provide maximum safety for air transportation passengers. It is not the purpose of this ARP to specify design methods or specific designs to be followed in the accomplishment of the stated objectives.
CURRENT
2017-06-28
Standard
AS6316
This SAE Aerospace Standard (AS) documents a common understanding of terms, compliance issues, and occupant injury criteria to facilitate the design and certification of oblique facing passenger seat installations specific to Part 25 aircraft. The applicability of the criteria listed in this current release is limited to seats with an occupant facing direction greater than 18° and no greater than 45° relative to the aircraft longitudinal axis. Seats installed at angles greater than 30° relative to the aircraft longitudinal axis must have an energy absorbing rest or shoulder harness and must satisfy the criteria listed in Table 2. Later revisions are intended to provide criteria for other facing directions. Performance criteria for forward and aft facing seats are provided in AS8049 and for side facing seats in AS8049/1.
CURRENT
2000-08-01
Standard
ARP998B
This ARP is intended to make recommendations for flight crew and cabin attendant restraint systems in aircraft. A properly designed crew restraint system will avoid injury or debilitation during a survivable crash and enable post crash assistance to occupants and escape from the aircraft. Consideration is given to existing requirements of the FAA and to the recommendations of aircraft operators and those involved in the manufacture or use of restraining devices. Crew member safety is the primary objective, with appropriate provisions for crew comfort taken into consideration. The criteria established herein are designed to standardize restraining systems without hindering the development of new, improved systems.
HISTORICAL
1967-11-01
Standard
ARP998
This ARP is intended to make recommendations for flight crew and cabin attendant restraint systems in aircraft. A properly designed crew restraint system will avoid injury or debilitation during a survivable crash and enable post crash assistance to occupants and escape from the aircraft. Consideration is given to existing requirements of the FAA and to the recommendations of aircraft operators and those involved in the manufacture or use of restraining devices. Crew member safety is the primary objective, with appropriate provisions for crew comfort taken into consideration. The criteria established herein are designed to standardize restraining systems without hindering the development of new, improved systems.
HISTORICAL
1976-02-15
Standard
ARP998A
This ARP is intended to make recommendations for flight crew and cabin attendant restraint systems in aircraft. A properly designed crew restraint system will avoid injury or debilitation during a survivable crash and enable post crash assistance to occupants and escape from the aircraft. Consideration is given to existing requirements of the FAA and to the recommendations of aircraft operators and those involved in the manufacture or use of restraining devices. Crew member safety is the primary objective, with appropriate provisions for crew comfort taken into consideration. The criteria established herein are designed to standardize restraining systems without hindering the development of new, improved systems.
2017-09-19
WIP Standard
AS6960
Seat surrounding furniture (commonly known as shells) is intended to enhance passenger comfort and privacy. They can offer additional space for reclining the seat into a bed position, additional stowage, amenities, etc. Often some amenities are located on the furniture including the front row monument installed in front of the passenger seat. The units normally attach to the same aircraft floor tracks directly in front or behind passenger seat(s) or to the seat primary structure. The unit structures are not directly integrated into the main fuselage and do not offer main supports for aircraft integrity. This Aerospace Standard (AS) establishes the minimum design, performance and qualification requirements for Seat Surrounding Furniture to be certified for installation in transport category airplanes.
2017-02-03
WIP Standard
ARP6199B

This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR part 25 Transport Airplane passenger seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR part 25 Appendix F, Parts IV and V. Such materials are referred to as Heat Release Special Conditions (HRSC) compliant]. Additionally, it is recommended to use HRSC compliant materials in applications where not required.

Independent furniture related to seat installations is outside the scope of this document.

CURRENT
2017-02-02
Standard
ARP6199A
This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR part 25 Transport Airplane passenger seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR part 25 Appendix F, Parts IV and V. Such materials are referred to as Heat Release Special Conditions (HRSC) compliant]. Additionally, it is recommended to use HRSC compliant materials in applications where not required. Independent furniture related to seat installations is outside the scope of this document.
HISTORICAL
2012-06-06
Standard
ARP6199
This SAE Aerospace Recommended Practice (ARP) provides an approach for determining which parts on aircraft seats are non-traditional, large, non-metallic panels that need to meet the test requirements of 14CFR Part 25 Appendix F, Parts IV & V. Independent furniture related to seat installations is outside the scope of this document.
2012-02-17
WIP Standard
AS6466
This Aerospace Standard defines minimum iinstallation performance standards, qualification requirements, and minimum documentation requirements for passenger and crew occupant inflatable restraint and structure-mounted airbag systems in civil rotorcraft transport aircraft and general aviation aircraft. The goal is to define test and evaluation criteria to demonstrate occupant protection of a seat/occupant/airbag system as required by Federal Aviation Regulations 14 CFR parts 23,25, 27, or 29 and applicable special conditions.
CURRENT
2008-09-12
Standard
AS8043B
This SAE Aerospace Standard (AS) specifies laboratory test procedures and minimum requirements for the manufacturer of restraint systems for use in civil aircraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation and the cabin interior configuration. This standard specifies the requirements for Type 1, Type 2, and Type 3 restraint systems. Buckles that release automatically or through any means other than the direct action of the fingers or thumb on the buckle are beyond the scope of this standard.
HISTORICAL
2000-03-01
Standard
AS8043A
This SAE Aerospace Standard (AS) specifies laboratory test procedures and minimum requirements for the manufacturer of restraint systems for use in civil aircraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation and the cabin interior configuration. This standard specifies the requirements for Type 1, Type 2 and Type 3 restraint systems.
HISTORICAL
1986-03-01
Standard
AS8043
This Aerospace Standard specifies laboratory test procedures and minimal requirements for the manufacturer of torso restraint systems for use in small fixed wing aircraft and rotorcraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance for the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation and the cabin interior configuration.
HISTORICAL
2001-03-01
Standard
ARP5475
This SAE Aerospace Recommended Practice (ARP) provides guidelines for abuse load testing of a deployable Individual Video System (IVS). The abuse load testing defined in this ARP is intended to only address the evaluation of the deployable IVS regarding stowage of the system and injurious projections/protrusions as a result of passenger interaction with the video system. Other aspects of the video system design or qualification may require additional testing or analysis and are outside the scope of this ARP. This ARP is not intended to address customer satisfaction or reliability aspects of individual designs.
CURRENT
2011-11-28
Standard
ARP5475A
This SAE Aerospace Recommended Practice (ARP) provides guidelines for abuse load testing of a deployable Individual Video System (IVS). The abuse load testing defined in this ARP is intended to only address the evaluation of the deployable IVS regarding stowage of the system and injurious projections/protrusions as a result of passenger interaction with the video system. Other aspects of the video system design or qualification may require additional testing or analysis and are outside the scope of this ARP. This ARP is not intended to address customer satisfaction or reliability aspects of individual designs.
Viewing 1 to 24 of 24