Criteria

Text:
Topic:
Author:
Display:

Results

Viewing 1 to 30 of 206
2011-04-12
Journal Article
2011-01-1383
Clément Chartier, Oivind Andersson, Bengt Johansson, Mark Musculus, Mohan Bobba
Post-injection strategies aimed at reducing engine-out emissions of unburned hydrocarbons (UHC) were investigated in an optical heavy-duty diesel engine operating at a low-load, low-temperature combustion (LTC) condition with high dilution (12.7% intake oxygen) where UHC emissions are problematic. Exhaust gas measurements showed that a carefully selected post injection reduced engine-out load-specific UHC emissions by 20% compared to operation with a single injection in the same load range. High-speed in-cylinder chemiluminescence imaging revealed that without a post injection, most of the chemiluminescence emission occurs close to the bowl wall, with no significant chemiluminescence signal within 27 mm of the injector. Previous studies have shown that over-leaning in this near-injector region after the end of injection causes the local equivalence ratio to fall below the ignitability limit.
2011-04-12
Technical Paper
2011-01-1394
Carl Magnus Lewander, Bengt Johansson, Per Tunestal
Partially Premixed Combustion (PPC) is a combustion concept by which it is possible to get low smoke and NOx emissions simultaneously. PPC requires high EGR levels to extend the ignition delay so that air and fuel mix prior to combustion to a larger extent than with conventional diesel combustion. This paper investigates the operating region of single injection PPC for three different fuels; Diesel, low octane gasoline with similar characteristics as diesel and higher octane standard gasoline. Limits in emissions are defined and the highest load that fulfills these requirements is determined. The investigation shows the benefits of using high octane number fuel for Multi-Cylinder PPC. With high octane fuel the ignition delay is made longer and the operating region of single injection PPC can be extended significantly. Experiments are carried out on a multi-cylinder heavy-duty engine at low, medium and high speed.
2011-08-30
Technical Paper
2011-01-2022
Mehrzad Kaiadi, Per Tunestal, Bengt Johansson
Abstract Stoichiometric operation of Spark Ignited (SI) Heavy Duty Natural Gas (HDNG) engines with a three way catalyst results in very low emissions however they suffer from bad gas-exchange efficiency due to use of throttle which results in high throttling losses. Variable Geometry Turbine (VGT) is a good practice to reduce throttling losses in a certain operating region of the engine. VTG technology is extensively used in diesel engines; it is very much ignored in gasoline engines however it is possible and advantageous to be used on HDNG engine due to their relatively low exhaust gas temperature. Exhaust gas temperatures in HDNG engines are low enough (lower than 760 degree Celsius) and tolerable for VGT material. Traditionally HDNG are equipped with a turbocharger with waste-gate but it is easy and simple to replace the by-pass turbocharger with a well-matched VGT.
2009-06-15
Journal Article
2009-01-1950
Mehrzad Kaiadi, Per Tunestål, Bengt Johansson
Combination of right EGR rates with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark-ignited natural gas engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. However dilution limit is limited in these types of engines because of the lower burnings rate of natural gas with higher EGR rates. One way to extend the dilution limit of a natural gas engine is to run the engine with Hythane (natural gas+ some percentage hydrogen). Previously benefits of hydrogen addition to a Lean Burn natural-gas fueled engine was investigated [1] however a complete study for stoichiometric operation was not performed. This paper presents measurements made on a heavy duty 6-cylinder natural gas engine.
2011-08-30
Technical Paper
2011-01-1835
Harri Hillamo, Teemu Anttinen, Ulf Aronsson, Clément Chartier, Oivind Andersson, Bengt Johansson
Combination of flow field measurements, shown in this paper, give new information on the effect of engine run parameters to formation of different flow fields inside piston bowl. The measurements were carried out with particle image velocimetry (PIV) technique in optical engine. Good set of results was achieved even though the feasibility of this technique in diesel engines is sometimes questioned. Main challenge in diesel engines is background radiation from soot particles which is strong enough to conceal the PIV signal. Window staining in diesel engine is also a problem, since very high particle image quality is needed for velocity analysis. All measurements were made in an optical heavy-duty diesel engine. Optical design of engine was Bowditch type [1]. The engine was charged and equipped with exhaust gas recirculation (EGR). The exhaust gas level was monitored by oxygen concentration and the level was matched to former soot concentration measurements.
2011-08-30
Technical Paper
2011-01-1775
Anders Widd, Rolf Johansson, Patrick Borgqvist, Per Tunestal, Bengt Johansson
This study investigates mode switching from spark ignited operation with early intake valve closing to residual gas enhanced HCCI using negative valve overlap on a port-fuel injected light-duty diesel engine. A mode switch is demonstrated at 3.5 bar IMEPnet and 1500 rpm. Valve timings and fuel amount have to be selected carefully prior to the mode switch. During mode transition, IMEPnet deviates by up to 0.5 bar from the set point. The time required to return to the set point as well as the transient behavior of the engine load varies depending on which control structure that is used. Both a model-based controller and a PI control approach were implemented and evaluated in experiments. The controllers were active in HCCI mode. The model-based controller achieved a smoother transition and while using it, the transition could be accomplished within three engine cycles.
2011-08-30
Technical Paper
2011-01-1772
Patrick Borgqvist, Per Tunestal, Bengt Johansson
A comparison between throttled and unthrottled spark ignition combustion with residual enhanced HCCI combustion is made. Early intake valve closing and late intake valve closing valve strategies for unthrottled spark ignition combustion are evaluated and compared. Approximately 3-6 percent relative improvement in net indicated efficiency is seen when comparing unthrottled spark ignition combustion with throttled spark ignition combustion depending on valve strategy and engine speed. The relative improvement in efficiency from spark ignition combustion to HCCI combustion is approximately 20 percent for the conditions presented in this study. The rebreathing strategies have the highest efficiency of the cases in this study.
2011-04-12
Journal Article
2011-01-0916
Jonas Ulfvik, Matthias Achilles, Martin Tuner, Bengt Johansson, Jesper Ahrenfeldt, Franz Xaver Schauer, Ulrik Henriksen
The Technical University of Denmark, DTU, has designed, built and tested a gasifier [1, 8] that is fuelled with wood chips and achieves a 93% conversion efficiency from wood to producer gas. By combining the gasifier with an ICE and an electric generator a co-generative system can be realized that produces electricity and heat. The gasifier uses the waste heat from the engine for drying and pyrolysis of the wood chips while the gas produced is used to fuel the engine. To achieve high efficiency in converting biomass to electricity an engine is needed that is adapted to high efficiency operation using the specific producer gas from the DTU gasifier. So far the majority of gas engines have been designed and optimized for operation on natural gas. The presented work uses a modern and highly efficient truck sized natural gas engine to investigate efficiency, emissions and general performance while operating on producer gas compared to natural gas operation.
2011-04-12
Journal Article
2011-01-1280
Johan Sjöholm, Rikard Wellander, Henrik Bladh, Mattias Richter, Per-Erik Bengtsson, Marcus Alden, Ulf Aronsson, Clement Chartier, Oivind Andersson, Bengt Johansson
Laser-Induced Incandescence (LII) has traditionally been considered a straightforward and reliable optical diagnostic technique for in-cylinder soot measurements. As a result, it is nowadays even possible to buy turn-key LII measurement systems. During recent years, however, attention has been drawn to a number of unresolved challenges with LII. Many of these are relevant mostly for particle sizing using time-resolved LII, but also two-dimensional soot volume fraction measurements are affected, especially in regions with high soot concentrations typically found in combustion engines. In this work the focus is on the specific challenges involved in performing high-repetition rate measurements with LII in diesel engines. All the mentioned issues might not be possible to overcome but they should nevertheless be known and their potential impact should be considered.
2011-04-12
Journal Article
2011-01-1292
Christoph Knappe, Peter Andersson, Martin Algotsson, Mattias Richter, Johannes Linden, Marcus Alden, Martin Tuner, Bengt Johansson
In order to further improve the energy conversion efficiency in reciprocating engines, detailed knowledge about the involved processes is required. One major loss source in internal combustion engines is heat loss through the cylinder walls. In order to increase the understanding of heat transfer processes and to validate and generate new heat transfer correlation models it is desirable, or even necessary, to have crank-angle resolved data on in-cylinder wall temperature. Laser-Induced Phosphorescence has proved to be a useful tool for surface thermometry also in such harsh environments as running engines. However, the ceramic structure of most phosphor coatings might introduce an error, due to its thermal insulation properties, when being exposed to rapidly changing temperatures. In this article the measurement technique is evaluated concerning the impact from the thickness of the phosphorescent layer on the measured temperature.
2011-04-12
Technical Paper
2011-01-1196
Matthias Achilles, Jonas Ulfvik, Martin Tuner, Bengt Johansson, Jesper Ahrenfeldt, Ulrik Henriksen, Franz Xaver Schauer
The Technical University of Denmark, DTU, has constructed, built and tested a gasifier [1, 11] that is fueled with wood chips and achieves a 93% conversion efficiency from wood to producer gas. By combining the gasifier with an internal combustion engine and a generator, a co-generative system can be realized that produces electricity and heat. The gasifier uses the waste heat from the engine for drying and pyrolysis of the wood chips while the produced gas is used to fuel the engine. To achieve high efficiency in converting biomass to electricity it necessitates an engine that is adapted to high efficiency operation using the specific producer gas from the DTU gasifier. So far the majority of gas engines of today are designed and optimized for SI-operation on natural gas.
2013-10-14
Technical Paper
2013-01-2700
Martin Tuner, Bengt Johansson, Philip Keller, Michael Becker
Partially Premixed Combustion (PPC) has demonstrated substantially higher efficiency compared to conventional diesel combustion (CDC) and gasoline engines (SI). By combining experiments and modeling the presented work investigates the underlying reasons for the improved efficiency, and quantifies the loss terms. The results indicate that it is possible to operate a HD-PPC engine with a production two-stage boost system over the European Stationary Cycle while likely meeting Euro VI and US10 emissions with a peak brake efficiency above 48%. A majority of the ESC can be operated with brake efficiency above 44%. The loss analysis reveals that low in-cylinder heat transfer losses are the most important reason for the high efficiencies of PPC. In-cylinder heat losses are basically halved in PPC compared to CDC, as a consequence of substantially reduced combustion temperature gradients, especially close to the combustion chamber walls.
2013-10-14
Technical Paper
2013-01-2702
Mengqin Shen, Martin Tuner, Bengt Johansson, William Cannella
Partially Premixed Combustion (PPC) has the potential of simultaneously providing high engine efficiency and low emissions. Previous research has shown that with proper combination of Exhaust-Gas Recirculation (EGR) and Air-Fuel equivalence ratio, it is possible to reduce engine-out emissions while still keeping the engine efficiency high. In this paper, the effect of changes in intake pressure (boost) and EGR fraction on PPC engine performance (e.g. ignition delay, burn duration, maximum pressure rise rate) and emissions (carbon monoxide (CO), unburned hydrocarbon (UHC), soot and NOX) was investigated in a single-cylinder, heavy-duty diesel engine. Swedish diesel fuel (MK1), RON 69 gasoline fuel and 99.5 vol% ethanol were tested. Fixed fueling rate and single injection strategy were employed.
2005-10-24
Technical Paper
2005-01-3724
Mikael Lemel, Anders Hultqvist, Andreas Vressner, Henrik Nordgren, Håkan Persson, Bengt Johansson
In this paper, the formaldehyde emissions from three different types of homogenous charge compression ignition (HCCI) engines are quantified for a range of fuels by means of Fourier Transform Infra Red (FTIR) spectroscopic analysis. The engines types are differentiated in the way the charge is prepared. The characterized engines are; the conventional port fuel injected one, a type that traps residuals by means of a Negative Valve Overlap (NVO) and finally a Direct Injected (DI) one. Fuels ranging from pure n-heptane to iso-octane via diesel, gasoline, PRF80, methanol and ethanol were characterized. Generally, the amount of formaldehyde found in the exhaust was decreasing with decreasing air/fuel ratio, advanced timing and increasing cycle temperature. It was found that increasing the source of formaldehyde i.e. the ratio of heat released in the cool-flame, brought on higher exhaust contents of formaldehyde.
2005-10-24
Technical Paper
2005-01-3731
Carl Wilhelmsson, Andreas Vressner, Per Tunestål, Bengt Johansson, Gustaf Särner, Marcus Aldén
In this paper the combustion chamber wall temperature was measured by the use of thermographic phosphor. The temperature was monitored over a large time window covering a load transient. Wall temperature measurement provide helpful information in all engines. This temperature is for example needed when calculating heat losses to the walls. Most important is however the effect of the wall temperature on combustion. The walls can not heat up instantaneously and the slowly increasing wall temperature following a load transient will affect the combustion events sucseeding the transient. The HCCI combustion process is, due to its dependence on chemical kinetics more sensitive to wall temperature than Otto or Diesel engines. In depth knowledge about transient wall temperature could increase the understanding of transient HCCI control. A “black box” state space model was derived which is useful when predicting transient wall temperature.
2005-09-11
Technical Paper
2005-24-008
Leif Hildingsson, Bengt Johansson, Anders Hultqvist, Gustaf Särner, Mattias Richter, Marcus Aldén
Simultaneous laser-induced fluorescence (LIF) imaging of formaldehyde and a fuel-tracer have been performed in a high-speed diesel engine. N-heptane and isooctane were used as fuel and toluene was used as a tracer. This arrangement made it possible to make simultaneous measurements of toluene by exciting at 266 nm and detecting at 270-320 nm while exciting formaldehyde at 355 nm and detecting at 400-500 nm. The aim of this study is to investigate how traditional fuel tracer and natural-occurring formaldehyde formed in the cool chemistry are transported in the piston bowl. A range of ignition delays were created by running the engine with different amounts of EGR. During this sweep the area where the low-temperature reactions take place were studied. The measurements were performed in a 0.5-l, single-cylinder optical engine running under conditions simulating a cruise-point, i.e., about 2.2 bar imep.
2006-04-03
Technical Paper
2006-01-0205
Jari Hyvönen, Carl Wilhelmsson, Bengt Johansson
The main benefit of HCCI engines compared to SI engines is improved fuel economy. The drawback is the diluted combustion with a substantially smaller operating range if not some kind of supercharging is used. The reasons for the higher brake efficiency in HCCI engines can be summarized in lower pumping losses and higher thermodynamic efficiency, due to higher compression ratio and higher ratio of specific heats if air is used as dilution. In the low load operating range, where HCCI today is mainly used, other parameters as friction losses, and cooling losses have a large impact on the achieved brake efficiency. To initiate the auto ignition of the in-cylinder charge a certain temperature and pressure have to be reached for a specific fuel. In an engine with high in-cylinder cooling losses the initial charge temperature before compression has to be higher than on an engine with less heat transfer.
2005-05-11
Technical Paper
2005-01-2137
Magnus Andersson, Bengt Johansson, Anders Hultqvist
An air hybrid is a vehicle with an ICE modified to also work as an air compressor and air motor. The engine is connected to two air reservoirs, normally the atmosphere and a high pressure tank. The main benefit of such a system is the possibility to make use of the kinetic energy of the vehicle otherwise lost when braking. The main difference between the air hybrid developed in this paper and earlier air hybrid concepts is the introduction of a pressure tank that substitutes the atmosphere as supplier of low air pressure. By this modification, a very high torque can be achieved in compressor mode as well as in air motor mode. A model of an air hybrid with two air tanks was created using the engine simulation code GT-Power. The results from the simulations were combined with a driving cycle to estimate the reduction in fuel consumption.
2005-05-11
Technical Paper
2005-01-2134
Salvador M. Aceves, Daniel L. Flowers, Joel Martinez-Frias, Francisco Espinosa-Loza, Magnus Christensen, Bengt Johansson, Randy P. Hessel
This paper illustrates the applicability of a sequential fluid mechanics, multi-zone chemical kinetics model to analyze HCCI experimental data for two combustion chamber geometries with different levels of turbulence: a low turbulence disc geometry (flat top piston), and a high turbulence square geometry (piston with a square bowl). The model uses a fluid mechanics code to determine temperature histories in the engine as a function of crank angle. These temperature histories are then fed into a chemical kinetic solver, which determines combustion characteristics for a relatively small number of zones (40). The model makes the assumption that there is no direct linking between turbulence and combustion. The multi-zone model yields good results for both the disc and the square geometries. The model makes good predictions of pressure traces and heat release rates.
2006-04-03
Technical Paper
2006-01-0195
Magnus Andersson, Bengt Johansson, Anders Hultqvist, Christof Nöhre
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
2006-04-03
Technical Paper
2006-01-0041
Sasa Trajkovic, Alexandar Milosavljevic, Per Tunestål, Bengt Johansson
A control system for pneumatic variable valve actuation has been designed, implemented and tested in a single cylinder test engine with valve actuators provided by Cargine Engineering AB. The design goal for the valve control system was to achieve valve lifts between 2 and 12 mm over an engine speed interval of 300 to 2500 rpm. The control system was developed using LabView and implemented on the PCI 7831. The design goals were fulfilled with some limitations. Due to physical limitations in the actuators, stable operation with valve lifts below 2.6 mm were not possible. During the engine testing the valve lift was limited to 7 mm to guarantee piston clearance. Different valve strategies for residual gas HCCI combustion were generated on a single-cylinder test engine.
2014-04-01
Technical Paper
2014-01-1327
Ashish Shah, Per Tunestal, Bengt Johansson
Abstract This article deals with application of a pre-chamber type ignition device in a heavy duty engine operated with natural gas. A particular pre-chamber ignition strategy called Avalanche Activated Combustion (originally ‘Lavinia Aktyvatsia Gorenia’ in Russian), commonly referred to as LAG-ignition process, has been studied by performing a parametric study of various pre- and main chamber mixture strength combinations. This strategy was first proposed in 1966 and has been mostly applied in light duty automotive engines. A majority of published data are results from developmental studies but the fundamental mechanism of the LAG-ignition process is unclear to date. To the best of authors' knowledge, the study presented in this article is the first generalized study to gain deeper understanding of the LAG-ignition process in heavy duty engines operating with natural gas as fuel for both chambers.
2014-04-01
Journal Article
2014-01-1330
Rikard Wellander, Joakim Rosell, Mattias Richter, Marcus Alden, Oivind Andersson, Bengt Johansson, Jeudi Duong, Jari Hyvonen
In this work the pre- to main chamber ignition process is studied in a Wärtsilä 34SG spark-ignited lean burn four-stroke large bore optical engine (bore 340 mm) operating on natural gas. Unburnt and burnt gas regions in planar cross-sections of the combustion chamber are identified by means of planar laser induced fluorescence (PLIF) from acetone seeded to the fuel. The emerging jets from the pre-chamber, the ignition process and early flame propagation are studied. Measurements reveal the presence of a significant temporal delay between the occurrence of a pressure difference across the pre-chamber holes and the appearance of hot burnt/burning gases at the nozzle exit. Variations in the delay affect the combustion timing and duration. The combustion rate in the pre-chamber does not influence the jet propagation speed, although it still has an effect on the overall combustion duration.
2015-04-14
Technical Paper
2015-01-0884
Lianhao Yin, Gabriel Ingesson, Sam Shamun, Per Tunestal, Rolf Johansson, Bengt Johansson
Abstract Partially Premixed Combustion (PPC) is a promising advanced combustion mode for future engines. In order to investigate the sensitivity of PPC to exhaust gas recirculation (EGR) rate, intake gas temperature, intake gas pressure, and injection timing, these parameters were swept individually at three different loads in a single cylinder diesel engine with gasoline-like fuel. A factor of sensitivity was defined to indicate the combustion's controllability and sensitivity to inlet gas parameters and injection timings. Through analysis of experimental results, a control window of inlet gas parameters and injection timings is obtained at different loads in PPC mode from 5 bar to 10 bar IMEPg load at 1200 rpm. To further study the PPC controllability with injection timing, main injection timing was adjusted to sustain steady combustion phasing subject to perturbation of inlet gas state.
2015-04-14
Technical Paper
2015-01-0867
Ashish Shah, Per Tunestal, Bengt Johansson
Abstract It has previously been shown by the authors that the pre-chamber ignition technique operating with fuel-rich pre-chamber combustion strategy is a very effective means of extending the lean limit of combustion with excess air in heavy duty natural gas engines in order to improve indicated efficiency and reduce emissions. This article presents a study of the influence of pre-chamber volume and nozzle diameter on the resultant ignition characteristics. The two parameters varied are the ratio of pre-chamber volume to engine's clearance volume and the ratio of total area of connecting nozzle to the pre-chamber volume. Each parameter is varied in 3 steps hence forming a 3 by 3 test matrix. The experiments are performed on a single cylinder 2L engine fitted with a custom made pre-chamber capable of spark ignition, fuel injection and pressure measurement.
2010-04-12
Technical Paper
2010-01-0825
Sasa Trajkovic, Per Tunestal, Bengt Johansson
In the study presented in this paper, a vehicle driving cycle simulation of the pneumatic hybrid has been conducted. The pneumatic hybrid powertrain has been modeled in GT-Power and validated against experimental data. The GT-Power engine model has been linked with a MATLAB/simulink vehicle model. The engine in question is a single-cylinder Scania D12 diesel engine, which has been converted to work as a pneumatic hybrid. The base engine model, provided by Scania, is made in GT-power and it is based on the same engine configuration as the one used in real engine testing. During pneumatic hybrid operation the engine can be used as a 2-stroke compressor for generation of compressed air during vehicle deceleration and during vehicle acceleration the engine can be operated as a 2-stroke air-motor driven by the previously stored pressurized air.
2010-04-12
Technical Paper
2010-01-0872
Claes-Goran Zander, Ola Stenlaas, Per Tunestal, Bengt Johansson
A diesel engine developed for an international market must be able to run on different fuels considering the diesel fuel qualities and the increasing selection of biofuels in the world. This leads to the question of how different fuels perform relative to a standard diesel fuel when not changing the hardware settings. In this study five fuels (Japanese diesel, MK3, EN590 with 10% RME, EN590 with 30% RME and pure RME) have been compared to a reference diesel fuel (Swedish MK1) when run on three different speeds and three different loads at each speed. The experiments are run on a Scania 13l Euro5 engine with standard settings for Swedish MK1 diesel. In general the differences were not large between the fuels. NO x usually increased compared to MK1 and then soot decreased as would be expected. The combustion efficiency increased with increased RME contents of the fuel but the indicated efficiency was not influenced by RME except for at higher loads.
2010-04-12
Technical Paper
2010-01-0871
Vittorio Manente, Per Tunestal, Bengt Johansson, William J. Cannella
The behavior of Ethanol and seven fuels in the boiling point range of gasoline but with an Octane Number spanning from 69 to 99 was investigated in Partially Premixed Combustion. A load sweep was performed from 5 to 18 bar gross IMEP at 1300 rpm. The engine used in the experiments was a single cylinder Scania D12. To allow high load operations and achieve sufficient mixing, the compression ratio was decreased from the standard 18:1 to 14.3:1. It was shown that by using only 50% of EGR it is possible to achieve NOx below 0.30 g/kWh even at high loads. At 18 bar IMEP soot was in the range of 1-2 FSN for the gasoline fuels while it was below 0.06 FSN with Ethanol. The use of high boost combined with relatively short combustion duration allowed reaching gross indicated efficiencies in the range of 54 - 56%. At high load the partial stratified mixture allowed to keep the maximum pressure rise rate below 15 bar/CAD with most of the fuels.
2009-11-02
Journal Article
2009-01-2668
Vittorio Manente, Bengt Johansson, Per Tunestal, William Cannella
The effects of fuel properties on the performance and emissions of an engine running in partially premixed combustion mode were investigated using nine test fuels developed in the gasoline boiling point range. The fuels covered a broad range of ignition quality and fuel chemistry. The fuels were characterized by performing a load sweep between 1 and 12 bar gross IMEP at 1000 and 1300 rpm. A heavy duty single cylinder engine from Scania was used for the experiments; the piston was not modified thus resulting in the standard compression ratio of 18:1. In order to properly run gasoline type of fuels in partially premixed combustion mode, an advanced combustion concept was developed. The concept involved using a lot of EGR, very high boost and an advanced injection strategy previously developed by the authors. By applying this concept all the fuels showed gross indicated efficiencies higher than 50% with a peak of 57% at 8 bar IMEP.
2009-11-02
Technical Paper
2009-01-2648
Leif Hildingsson, Gautam Kalghatgi, Nigel Tait, Bengt Johansson, Andrew Harrison
Previous work has showed that it may be advantageous to use fuels of lower cetane numbers compared to today's diesel fuels in compression ignition engines. The benefits come from the longer ignition delays that these fuels have. There is more time available for the fuel and air to mix before combustion starts which is favourable for achieving low emissions of NOx and smoke though premixing usually leads to higher emissions of CO and unburned hydrocarbons. In the present work, operation of a single-cylinder light-duty compression ignition engine on four different fuels of different octane numbers, in the gasoline boiling range, is compared to running on a diesel fuel. The gasoline fuels have research octane numbers (RON) of 91, 84, 78, and 72. These are compared at a low load/low speed condition (4 bar IMEP / 1200 rpm) in SOI sweeps as well as at a higher load and speeds (10 bar IMEP / 2000 and 3000 rpm) in EGR sweeps.
Viewing 1 to 30 of 206

Filter

  • Range:
    to:
  • Year: