Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Application of Reference Governor Using Soft Constraints and Steepest Descent Method to Diesel Engine Aftertreatment Temperature Control

2013-04-08
2013-01-0350
This paper considers an application of reference governor (RG) to automotive diesel aftertreatment temperature control. Recently, regulations on vehicle emissions have become more stringent, and engine hardware and software are expected to be more complicated. It is getting more difficult to guarantee constraints in control systems as well as good control performance. Among model-based control methods that can directly treat constraints, this paper focuses on the RG, which has recently attracted a lot of attention as one method of model prediction-based control. In the RG, references in tracking control are modified based on future prediction so that the predicted outputs in a closed-loop system satisfy the constraints. This paper proposes an online RG algorithm, taking account of the real-time implementation on engine embedded controllers.
Technical Paper

Pelvic Injuries in Side Impact Collisions: A Field Accident Analysis and Dynamic Tests on Isolated Pelvic Bones

1997-11-12
973322
The accidentological studies dealing with automotive side collisions suggest that the pelvis is very vulnerable. Car manufacturers are more and more concerned with the protection of the occupant in lateral impact, but there is a lack of knowledge of the behavior of the pelvic bony structure and of its biomechanical tolerances. This knowledge however is essential in order to optimize protection devices and car structures with regard to the security of the occupants. The main goal of this study is thus two-fold: First, a field accident analysis was carried out in order to document the lesions and the injury mechanisms encountered in lateral impact. The accident database of the Laboratory of Accidentology and Biomechanics (LAB) was used and a sample of 219 injured occupants sustaining 381 injuries in lateral collision enables to evaluate the most frequent injuries and their location. Those injuries were also analyzed with regard to the car characteristics.
Technical Paper

A Parametric Finite Element Model of the Human Pelvis

1998-11-02
983147
The present study describes the development of a refined finite element model of the human pelvis. The objectives of this research work were to: Statistically study the human pelvis geometry, and develop a parameterized model. Mechanically validate the model with regard to the available in-house experimental data. Model the injury mechanisms observed in the experimental studies. The significant dimensions of the pelvis were identified by statistical analysis of the pelvis geometry based on the Reynolds et al. data [1]. Those dimensions were used to classify the in-house tested pelves. An interpolation technique (Kriging [2, 3, 4, 5, 6, 7 and 8]) was then used in order to distort a reference mesh and adapt its geometry to the measured geometry of the tested pelvis. The mechanical validation of the model was carried out by comparing numerical and experimental results, and the influence of the geometrical variations on the behavior of the pelvis was thus assessed.
Technical Paper

Thoracic Response to Shoulder Belt Loading: Investigation of Chest Stiffness and Longitudinal Strain Pattern of Ribs

2009-04-20
2009-01-0384
Two post-mortem human subjects were subjected to dynamic, non-injurious (up to 20% chest deflection) anterior shoulder belt loading at 0.5 m/s and 0.9 m/s loading rates. The human surrogates were mounted to a stationary apparatus that supported the spine and shoulder in a configuration comparable to that achieved in a 48 km/h sled test at the time of maximum chest deformation. A hydraulically driven shoulder belt was used to load the anterior thorax which was instrumented with a load cell for measuring reaction force and uniaxial strain gages at the 4th and 8th ribs. In addition, the deformation of the chest was measured using a 16- camera Vicon 3D motion capture system. In order to investigate the chest deformation pattern and ribcage loading in greater detail, a human finite element (FE) model of the thorax was used to simulate the tests.
Technical Paper

Internal vs. External Chest Deformation Response to Shoulder Belt Loading, Part 1: Table-Top Tests

2009-04-20
2009-01-0393
This study presents a detailed comparison of internally and externally measured chest deflections resulting from eight tests conducted on three male post mortem human subjects. A hydraulically driven shoulder belt loaded the anterior thorax under a fixed spine condition while displacement data were obtained via a high-speed 16-camera motion capture system (VICON MX™). Comparison of belt displacement and sternal displacement measured at the bone surface provided a method for quantifying effective change in superficial soft tissue depth at the mid sternum under belt loading. The relationship between the external displacement and the decrease in the effective superficial tissue depth was found to be monotonic and nonlinear. At 65 mm of mid-sternal posterior displacement measured externally, the effective thickness of the superficial tissues and air gap between the belt and the skin had decreased by 14 mm relative to the unloaded state.
Technical Paper

Assessment of the Thor and Hybrid III Crash Dummies: Steering Wheel Rim Impacts to the Upper Abdomen

2004-03-08
2004-01-0310
This investigation explored THOR's force-deflection response to upper abdomen/lower ribcage steering wheel rim impacts in comparison to the Hybrid III and cadaver test subjects. The stationary subjects were impacted by a ballasted surrogate wheel propelled at 4 m/s, a test condition designed to approximate the upper abdomen impacting a steering wheel rim in a frontal crash. Both the standard THOR and the Hybrid III crash dummies were substantially stiffer than the cadavers. Removing THOR's torso skin and foam from the upper abdomen and replacing the standard Hybrid III abdomen with a prototype gel-filled unit produced force-deflection results that were more similar to the cadavers. THOR offers advantages over the Hybrid III because of its ability to measure abdominal deflection. THOR, with modification, would be a useful instrument with which to assess the crashworthiness of steering assemblies and restraint systems in frontal crashes.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

A Normalization Technique for Developing Corridors from Individual Subject Responses

2004-03-08
2004-01-0288
This paper presents a technique for developing corridors from individual subject responses contained in experimental biomechanical data sets. Force-deflection response is used as an illustrative example. The technique begins with a method for averaging human subject force-deflection responses in which curve shape characteristics are maintained and discontinuities are avoided. Individual responses sharing a common characteristic shape are averaged based upon normalized deflection values. The normalized average response is then scaled to represent the given data set using the mean peak deflection value associated with the set of experimental data. Finally, a procedure for developing a corridor around the scaled normalized average response is presented using standard deviation calculations for both force and deflection.
Technical Paper

Sled System Requirements for the Analysis of Side Impact Thoracic Injury Criteria and Occupant Protection

2001-03-05
2001-01-0721
This paper discusses struck-side occupant thoracic response to side-impact loading and the requirements of a sled system capable of reproducing the relevant motions of a laterally impacted vehicle. A simplified viscoelastic representation of a thorax is used to evaluate the effect of the door velocity-time profile on injury criteria and on the internal stress state of the thorax. Simulations using a prescribed door velocity-time profile (punch impact) are contrasted against simulations using a constant-velocity impact (Heidelberg-type impact). It is found that the stress distribution and magnitude within the thorax, in addition to the maximum thorax compression and viscous response, depend not only on the door-occupant closing velocity, but also on the shape of the door velocity-time profile throughout the time of contact with the occupant. A sled system capable of properly reproducing side-impact door and seat motion is described.
Technical Paper

Displacement Measurements in the Hybrid III Chest

2001-03-05
2001-01-0118
This paper presents an analysis of the displacement measurement of the Hybrid III 50th percentile male dummy chest in quasistatic and dynamic loading environments. In this dummy, the sternal chest deformation is typically characterized using a sliding chest potentiometer, originally designed to measure inward deflection in the central axis of the dummy chest. Loading environments that include other modes of deformation, such as lateral translations or rotations, can create a displacement vector that is not aligned with this sensitive axis. To demonstrate this, the dummy chest was loaded quasistatically and dynamically in a series of tests. A string potentiometer array, with the capability to monitor additional deflection modes, was used to supplement the measurement of the chest slider.
Technical Paper

Parametric study of side impact thoracic injury criteria using the MADYMO human body model

2001-06-04
2001-06-0182
This paper presents a computational study of the effects of three parameters on the resulting thoracic injury criteria in side impacts. The parameters evaluated are a) door velocity-time (V-t) profile, b) door interior padding modulus, and c) initial door-to-occupant offset. Regardless of pad modulus, initial offset, or the criterion used to assess injury, higher peak door velocity is shown to correspond with more severe injury. Injury outcome is not, however, found to be sensitive to the door velocity at the time of first occupant contact. A larger initial offset generally is found to result in lower injury, even when the larger offset results in a higher door velocity at occupant contact, because the increased offset results in contact later in the door V-t profile - closer to the point at which the door velocity begins to decrease. Cases of contradictory injury criteria trends are identified, particularly in response to changes in the pad modulus.
Technical Paper

Load Distribution-Specific Viscoelastic Characterization of the Hybrid III Chest

2002-03-04
2002-01-0024
This paper presents a load distribution-specific viscoelastic structural characterization of the Hybrid III 50th percentile male anthropomorphic test dummy thorax. The dummy is positioned supine on a high-speed material testing machine and ramp-and-hold tests are performed using a distributed load, a hub load, and a diagonal belt load applied to the anterior thorax of the dummy. The force-deflection response is shown to be linear viscoelastic for all loading conditions when the internal dummy instrumentation is used to measure chest deflection. When an externally measured displacement (i.e., a measurement that includes the superficial skin material) is used for the characterization, a quasilinear viscoelastic characterization is necessary. Linear and quasilinear viscoelastic model coefficients are presented for all three loading conditions.
Technical Paper

Development and Validation of an Occupant Lower Limb Finite Element Model

2011-04-12
2011-01-1128
More than half of occupant lower extremity (LEX) injuries due to automotive frontal crashes are in the knee-thigh-hip (KTH) complex. To design the injury countermeasures for the occupant LEX, first the biomechanical and injury responses of the occupant LEX components during automotive frontal crashes should be known. The objective of this study is to develop a detailed biofidelic occupant LEX Finite Element (FE) model based on the component surfaces reconstructed from the medical image data of a 50th percentile male volunteer in a sitting posture. Both volumetric (unstructured) and structural mesh methods were used to generate the solid elements (mostly hexahedral type) to enhance the model simulation accuracy. The FE model includes the femur, tibia, fibula, patella, cartilage, ligaments, menisci, patella tendon, flesh, muscle, and skin. The constitutive material models and their corresponding parameters were defined based on literature data.
Technical Paper

Autonomous Intelligent Cruise Control Incorporating Automatic Braking

1993-03-01
930510
Conventional cruise control systems have been in use for many years. Their function is to maintain a preset vehicle speed thus improving the comfort for the driver during steady driving conditions. Most systems achieve this by having a small electronic control unit which monitors vehicle speed and driver interface controls and operates the throttle butterfly to control engine power. Figure 1. Various interlock features are fitted to prevent unwanted engine power increases in the event of a system failure. Cruise control is widely fitted in the North American market, but on the more crowded roads of Western Europe its use is somewhat restricted. The ability to maintain a fixed speed is of limited use when traffic conditions dictate the widely varying speeds that are commonplace in the UK and becoming more common in the rest of Western Europe and North America.
Technical Paper

Comparison of Belted Hybrid III, THOR, and Cadaver Thoracic Responses in Oblique Frontal and Full Frontal Sled Tests

2003-03-03
2003-01-0160
This paper compares restrained Hybrid III and THOR thoracic kinematics and cadaver injury outcome in 30° oblique frontal and in full frontal sled tests. Peak shoulder belt tension, the primary source of chest loading, changed by less than four percent and peak chest resultant acceleration changed by less than 10% over the 30° range tested. Thoracic kinematics were likewise insensitive to the direction of the collision vector, though they were markedly different between the two dummies. Mid-sternal Hybrid III chest deflection, measured by the standard sternal potentiometer and by supplemental internal string potentiometers, was slightly lower (∼10%) in the oblique tests, but the oblique tests produced a negligible increase in lateral movement of the sternum. In an attempt to understand the biofidelity of these dummy responses, a series of 30-km/h human cadaver tests having several collision vectors (0°, 15°, 30°, 45°) was analyzed.
Technical Paper

Research Program to Investigate Lower Extremity Injuries

1994-03-01
940711
The University of Virginia is investigating the biomechanical response and the injury tolerance of the lower extremities. This paper presents the experimental and simulation work used to study the injury patterns and mechanisms of the ankle/foot complex. The simulation effort has developed a segmented lower limb and foot model for an occupant simulator program to study the interactions of the foot with intruding toepan and pedal components. The experimental procedures include static tests, pendulum impacts, and full-scale sled tests with the Advanced Anthropomorphic Test Device and human cadavers. In these tests, the response of the lower extremities is characterized with analogous dummy and cadaver instrumentation packages that include strain gauges, electrogoniometers, angular rate sensors, accelerometers, and load cells. An external apparatus is applied to the surrogate's lower extremities to simulate the effects of muscle tensing.
Technical Paper

Braking Behaviour in Emergencies

1995-02-01
950969
Emergency situations rarely occur in a driver's experience and the braking and steering manoeuvres that are then required are usually outside the routine physical behaviour ranges. Immediate reactions are automatic and are therefore unlikely to include physical movements that go beyond these limits. It has always been difficult, however, to prove this because simulators could not create total realism, accident studies do not show brake pedal behaviour and realistic experiments are unethical and dangerous. This paper reviews what is known about driver braking behaviour together with accident studies. Experiments performed by Lucas are described in which pseudo-realistic accident situations are created and braking behaviour modelled.
Technical Paper

Development and Validation of a Finite Element Model for the Polar-II Upper Body

2006-04-03
2006-01-0684
The goal of this study was to develop and validate a finite element (FE) model of the Polar-II pedestrian dummy. An upper body model consisting of the head, neck, shoulder, thorax, and abdomen was coupled with a previously validated model of the lower limb The viscoelastic material properties of the dummy components were determined from dynamic compression tests of shoulder urethane, shoulder rubber and abdominal foam. For validation of the entire upper body, the model was compared with NHTSA response requirements for their advanced frontal dummy (Thor) including head and neck pendulum tests as well as ribcage and abdominal impact tests. In addition, the Polar-II full body FE model was subjected to simulated vehicle-pedestrian impacts that recreated published experiments. Simulated head and pelvis accelerations as well as upper body trajectories reasonably reproduced the experiment.
Technical Paper

Development and Validation of a Finite Element Model of the THOR Lower Extremity

2005-04-11
2005-01-1295
A finite element (FE) model of the THOR lower extremity (THOR-LX) was developed to enhance research using the THOR-LX. A three-dimensional representation of the physical THOR-LX was created with the same functionality: 3-axis ankle rotation, compliant tibia element, Achilles' cable, and deformable skin. The model outputs the same measurements as the THOR-LX hardware. The completed finite element model was correlated with the physical THOR-LX by simulating ten physical experiments and comparing the results. It was concluded that the FE model may be used to reasonably predict the results of physical tests performed with the THOR-LX.
Technical Paper

Elimination of Thoracic Muscle Tensing Effects for Frontal Crash Dummies

2005-04-11
2005-01-0307
Current crash dummy biofidelity standards include the estimated effects of tensing the muscles of the thorax. This study reviewed the decision to incorporate muscle tensing by examining relevant past studies and by using an existing mathematical model of thoracic impacts. The study finds evidence that muscle tensing effects are less pronounced than implied by the biofidelity standard response corridors, that the response corridors were improperly modified to include tensing effects, and that tensing of other body regions, such as extremity bracing, may have a much greater effect on the response and injury potential than tensing of only the thoracic musculature. Based on these findings, it is recommended that muscle tensing should be eliminated from thoracic biofidelity requirements until there is sufficient information regarding multi-region muscle tensing response and the capability to incorporate this new data into a crash dummy.
X