Criteria

Text:
Topic:
Author:
Display:

Results

Viewing 1 to 30 of 35
2011-04-12
Journal Article
2011-01-1381
Ezio Mancaruso, Luigi Sequino, Bianca Maria Vaglieco, Claudio Ciaravino, Alberto Vassallo
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized RME at two levels of blending on spray formation and combustion in modern automotive diesel engines. The tests were performed on an optical single-cylinder engine sharing combustion system configuration with the 2.0L Euro5 GM diesel engine for passenger car application. Two blends (B50 and B100) blending were tested for both fresh and aged RME and compared with commercial diesel fuel in two different operating points typical of NEDC (1500rpm/2bar BMEP and 2000rpm/5bar BMEP). The experimental activity was devoted to an in-depth investigation of the spray density, breakup and penetration, mixture formation, combustion and soot formation, by means of optical techniques.
2011-04-12
Technical Paper
2011-01-1414
Ferdinando Taglialatela-Scafati, Nicola Cesario, Mario Lavorgna, Ezio Mancaruso, Bianca Maria Vaglieco
Increasing demands on emissions reduction and efficiency encouraged a progressive introduction of cleaner combustion concepts. "Advanced" diesel combustions offer a high potential for simultaneous reduction of both NOx and soot within the engine through high inlet charge dilution and mixture homogenization. However, the potential benefits of these combustions in terms of emissions are counterbalanced by their high sensitivity to in-cylinder thermodynamic conditions. This sensitivity makes the engines require closed loop combustion control with real-time information about combustion quality. The parameter widely considered as the most important for the evaluation of the combustion quality in internal combustion engines is the cylinder pressure. However, this kind of measure involves an intrusive approach to the cylinder, expensive sensors and a special mounting process.
2013-04-08
Technical Paper
2013-01-1591
Agnese Magno, Ezio Mancaruso, Bianca Maria Vaglieco
This study was conducted to determine the effects of the fouling process on the piezoelectric injectors in a transparent common-rail diesel engine. Piezoelectric injectors are characterized by a ceramic actuator that can dilate or retract when it receives a pulse of current. The piezo element controls a valve, which creates an imbalance in the pressure that is exerted at each end of the needle, causing the needle rising or closing. Two same model injectors were tested; one was new and the other one was fouled on a vehicle. The aim of the experimental investigation was to evaluate the performance of a new and a fouled piezoelectric injector in terms of injection and flame evolution. It was evaluated how the nozzle carbon deposits affect the injection quantity and combustion. The experimental apparatus was a single-cylinder research engine equipped with a Euro 5 multi-cylinder head. A second-generation common rail injection system and 6-hole piezoelectric injectors were used too.
2013-09-08
Technical Paper
2013-24-0039
Ezio Mancaruso, Luigi Sequino, Bianca Maria Vaglieco, Claudio Ciaravino
Interest on the issue of diesel injector nozzle deposits is rising in the last years due to its effects on engine performance. The alteration of nozzles geometry can cause a difference in fuel mass flow and influence smoke emission. Investigation on the effects of nozzle coking in a diesel injector has been the topic of this paper. The experiments have been carried out in a single cylinder optical engine operating in premixed mode. The head of a Euro 5 production engine has been mounted on an elongated cylinder and the production CR injection system has been used. A sapphire window has been set in the piston head in order to have visible access to phenomena occurring in the combustion chamber. Three injectors with decreasing flow number (FN) have been tested. Engine has been fed with commercial diesel fuel. High spatial and temporal resolution camera has been used for the acquisition of in-cylinder injection and combustion images.
2013-09-08
Technical Paper
2013-24-0042
Simone Lombardi, Katarzyna Bizon, Gaetano Continillo, Ezio Mancaruso, Bianca Maria Vaglieco
This work reports on the application of spectroscopic measurements coupled with data processing techniques in order to study, in terms of spectral emissions, the dynamic of the HCCI (Homogeneous charge compression ignition) combustion that occurs inside the combustion chamber of an optically accessible direct injection Diesel engine. A pre-processing of the recorded spectra is required for a correct analysis. The procedure of pre-processing consists of two main steps, that is: noise filtering with a technique based on the POD (Proper Orthogonal Decomposition); estimate and subtraction of the baseline. The analysis of the dynamics of the recorded spectra was carried out by the estimates of the synchronous and asynchronous 2D correlation spectra.
2013-09-08
Journal Article
2013-24-0044
Roberto Finesso, Ezio Spessa, Ezio Mancaruso, Luigi Sequino, Bianca Maria Vaglieco
An innovative quasi-dimensional multizone combustion model for the spray formation, combustion and emission formation analysis in DI diesel engines was assessed and applied to an optical single cylinder engine. The model, which has been recently presented by the authors, integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model. The 1D spray model is capable of predicting the equivalence ratio of the fuel during the mixing process, as well as the spray penetration. The multizone approach is based on the application of the mass and energy conservation laws to several homogeneous zones identified in the combustion chamber. A specific submodel is also implemented to simulate the dilution of the burned gases. Soot formation is modeled by an expression which derives from Kitamura et al.'s results, in which an explicit dependence on the local equivalence ratio is considered.
2013-09-08
Technical Paper
2013-24-0045
Katarzyna Bizon, Gaetano Continillo, Simone Lombardi, Ezio Mancaruso, Paolo Sementa, Bianca Maria Vaglieco
Flame luminosity fields can nowadays be collected from optically accessible engines, with high spatial and temporal resolution, and constitute a very powerful investigation means for the transient combustion phenomena taking place in the engine chamber. Interpretation of the impressive amount of collected data can be quite challenging, mainly due to the variety of coupled phenomena involved. Application of Independent Component Analysis (ICA) aims here at separating spatial structures related to different combustion events, and is coupled with the analysis of the statistics of the coefficients of the independent components, and of the measured in-cylinder parameters. This paper reports on the comparison of the application of ICA to 2D images of combustion-related luminosity collected from two different optically accessible engines: Diesel and spark ignition.
2013-09-08
Technical Paper
2013-24-0062
Agnese Magno, Ezio Mancaruso, Bianca Maria Vaglieco, Salvatore Florio, Gianmarco Gioco, Elena Rebesco
The aim of this study is to investigate how the fouling that injectors undergo after several operating hours on a vehicle can affect the injection and combustion phases. The impact of the injector fouling on the pollutant formation has been also investigated. Moreover, the effects of the injector cleaning by deposits through the top quality diesel fuel commercialized by eni that is FAME free and contains multi performance additives have been investigated. The experimentation has been carried out on transparent compression ignition engine. It is a single cylinder equipped with a Euro 5 multi-cylinder head and a second-generation common rail injection system. Three indirect-acting piezoelectric injectors have been tested. The first one has been fouled with European commercial diesel fuel through the CEC DW10 injector-coking test. The second one has been fouled in the same way and, then, it has been cleaned with eni top quality diesel fuel. This fuel has fed the third injector too.
2014-11-11
Technical Paper
2014-32-0135
Silvana Di Iorio, Agnese Magno, Ezio Mancaruso, Bianca Maria Vaglieco, Luigi Arnone, Lorenzo Dal Bello
Abstract The present paper describes the results of an experimental activity performed on a small diesel engine for quadricycles, a category of vehicles that is spreading in Europe and is recently spreading over Indian countries. The engine is a prototype three-cylinder with 1000 cc of displacement and it is equipped with a direct common-rail injection system that reaches a maximum pressure of 1400 bar. The engine was designed to comply with Euro 4 emission standard that is a future regulation for quadricycles. It is worth underlining that the engine can meet emission limits just with EGR system and a DOC, without DPF. Various diesel/RME blends were tested; pure diesel and biodiesel fuels were also used. The investigation was carried out at the engine speeds of 1400, 2000 and 3400 rpm and full load. Combustion characteristics of both blended and pure RME were analyzed by means of in-cylinder pressure and heat released histories.
2010-04-12
Technical Paper
2010-01-0865
Ezio Mancaruso, Bianca Vaglieco, Claudio Ciaravino
In this paper we report how optical techniques were applied in the cylinder of an optically accessible engine equipped with latest-generation EURO V diesel engine head. The injection strategy with high percentage of EGR, characteristic of real engine operating point, was adopted. In particular, the combustion behavior at 1500 rpm\2 bar BMEP was investigated. Alternative diesel fuels were used. In particular, rapeseed methyl ester (RME) and gas to liquid (GTL) were selected as representative of 1st and 2nd generation alternative diesel fuel, respectively. Combustion analysis was carried out in the engine combustion chamber by means of visible digital imaging. These measurements helped to analyze the chemical and physical events occurring during the mixture preparation and the combustion development. Ultraviolet (UV) digital imaging was also performed and the presence of characteristic radical, like OH, in the various phases of combustion was detected as well.
2009-09-13
Journal Article
2009-24-0088
Carlo Beatrice, Silvana Di Iorio, Chiara Guido, Ezio Mancaruso, Bianca Maria Vaglieco, Alberto Vassallo
The present paper describes the first results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of Fatty-Acid Methyl Esters (FAME) and gas-to-liquid (GTL) fuel blends on the performance, emissions and fuel consumption of modern automotive diesel engines. The tests were performed on the architecture of GM 1.9L Euro4 diesel engine for passenger car application, both on optical single-cylinder and on production four-cylinder engines, sharing the same combustion system configuration. Various blends of biodiesels as well as reference diesel fuel were tested. The experimental activity on the single-cylinder engine was devoted to an in-depth investigation of the combustion process and pollutant formation, by means of different optical diagnostics techniques, based on imaging multiwavelength spectroscopy.
2014-10-13
Technical Paper
2014-01-2649
Agnese Magno, Ezio Mancaruso, Bianca Maria Vaglieco
Abstract The aim of this study is to investigate the combustion process and pollutant formation in a small compression ignition engine. The engine is a prototype for quadricycles. It was designed to comply with Euro 4 emission standard that is a future regulation for this type of vehicles. Two optical accesses for endoscopes were realized in the first cylinder to investigate the combustion process. Two-color pyrometry method was applied to combustion images in order to detect the flame temperature and the soot concentration. The engine ran with a biodiesel, the rapeseed methyl ester, and a conventional diesel fuel. Operating conditions at the engine speed of 2000 rpm at full and medium load were tested. NOx emissions were measured at exhaust. A smoke meter was used to determine the particulate matter concentration. The sizing and the counting of the particles were performed by means of an engine exhaust particle sizer spectrometer.
2014-04-01
Technical Paper
2014-01-1424
Ezio Mancaruso, Renato Marialto, Luigi Sequino, Bianca Maria Vaglieco
Abstract In recent years, several studies on the efficiency of modern diesel engines have focused on the modeling of combustion process in its different phases. Here, analytical equations are used to describe the physical phenomena that occur in the cylinder. The good agreement between the experimental and simulated data could improve the predictive capabilities of the computational code and reduce the cost of experimental activities. For the modeling of a diesel spray, the first step has been to investigate its behavior in a non-combusting environment; in particular, Musculus and Kattke proposed a model for the simulation of the injection of fuel in non-reacting still environment. Starting from that knowledge, the authors apply the injection model to a compression ignition research engine. By means of an optical engine, injection phase has been investigated via 2D digital imaging. The main jet characteristics like penetration and dispersion angle have been measured.
2014-04-01
Technical Paper
2014-01-1602
Silvana Di Iorio, Agnese Magno, Ezio Mancaruso, Bianca Maria Vaglieco
Abstract This paper deals with the combustion characteristics and exhaust emissions of a diesel engine fuelled with conventional diesel fuel and a biodiesel blend, in particular a 20% v/v concentration of rapeseed methyl ester (RME) mixed with diesel fuel. The investigation was carried out on a prototype three-cylinder engine with 1000 cc of displacement for quadricycle applications. The engine is equipped with a direct common-rail injection system that reaches a maximum pressure of 1400 bar. The engine was designed to comply with Euro 4 and BS IV exhaust emission regulations without a diesel particulate filter. Both in-cylinder pressure and rate of heat release traces were analyzed at different engine speeds and loads. Gaseous emissions were measured at the exhaust. A smoke meter was used to measure the particulate matter concentration. The sizing and the counting of the particles were performed by means of an engine exhaust particle sizer spectrometer.
2013-09-08
Technical Paper
2013-24-0137
Katarzyna Bizon, Gaetano Continillo, Ezio Mancaruso, Bianca Maria Vaglieco
This study aims at building efficient and robust artificial neural networks (ANN) able to reconstruct the in-cylinder pressure of Diesel engines and to identify engine conditions starting from the signal of a low-cost accelerometer placed on the engine block. The accelerometer is a perfect non-intrusive replacement for expensive probes and is prospectively suitable for production vehicles. In this view, the artificial neural network is meant to be efficient in terms of response time, i.e. fast enough for on-line use. In addition, robustness is sought in order to provide flexibility in terms of operation parameters. Here we consider a feed-forward neural network based on radial basis functions (RBF) for signal reconstruction, and a feed-forward multi-layer perceptron network with tan-sigmoid transfer function for signal classification. The networks are trained using measurements from a three-cylinder real engine for various operating conditions.
2013-04-08
Technical Paper
2013-01-1672
Ezio Mancaruso, Bianca Maria Vaglieco
This paper reports experiments on a single-cylinder direct-injection compression ignition engine operating in premixed charge compression ignition (PCCI) combustion mode. The engine was fuelled with pure rapeseed methyl ester (RME) and bio-ethanol. RME was injected in the combustion chamber by common rail (CR) injection system at 800 bar and bio-ethanol in the intake manifold by commercial port fuel injection system at 3.5 bar. The effects of different percentage of bio-ethanol were studied by means of both the in-cylinder heat release analysis and the high-speed UV-visible chemiluminescence visualization. The pollutant formation and exhaust emissions of the engine operating in dual fuel mode were evaluated. The increase of the bio-ethanol content improved the brake thermal efficiency slightly even if the brake fuel consumption increased. However, the choice to inject two biofuels decreases both the smoke opacity and NOx concentration.
2012-04-16
Technical Paper
2012-01-0701
Luigi Allocca, Bianca Maria Vaglieco, Alessandro Montanaro, Ezio Mancaruso, Claudio Ciaravino, Giovanni Avolio
The present paper describes an experimental investigation over the impact of diesel injector nozzle flow number on spray formation and combustion evolution for a modern EURO5 light-duty diesel engine. The analysis has been carried out by coupling the investigations in non evaporative spray bomb to tests in optical single cylinder engine in firing conditions. The research activity, which is the result of a collaborative project between Istituto Motori Napoli - CNR and GM Powertrain Europe, is devoted to understanding the basic operating behaviour of low flow number nozzles which are showing promising improvements in diesel engine behaviour at partial load. In fact, because of the compelling need to push further emission, efficiency, combustion noise and power density capabilities of the last-generation diesel engines, the combination of high injection pressure fuel pumps and low flow number nozzles is general trend among major OEMs.
2012-04-16
Technical Paper
2012-01-1238
Ezio Mancaruso, Bianca Maria Vaglieco
Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
2007-04-16
Technical Paper
2007-01-0192
Ezio Mancaruso, Simona S. Merola, Bianca M. Vaglieco
Homogeneous Charge Compression Ignition (HCCI) combustion was applied to a transparent diesel engine equipped with high pressure Common Rail (CR) injection system. By means of CR system the quantity of fuel was split into five injections per cycle. Combined measurements, based on digital imaging and spectroscopic techniques, were applied to follow the evolution of HCCI combustion process with high temporal and spatial resolution. Digital imaging allowed to analyse injection and combustion phases. Broadband ultraviolet - visible extinction spectroscopy (BUVES) and flame emission measurements were carried out to evaluate the presence of radicals and species such as HCO, OH, CH, and CO. In particular, BUVES measurements were performed to follow fuel oxidation, and pollutant formation and oxidation. During injection and cool combustion, bands of aromatic compounds and alkyl peroxides, indicating fuel decomposition, and hydrogen peroxides were detected.
2008-04-14
Technical Paper
2008-01-0027
Ezio Mancaruso, Simona S. Merola, Bianca M. Vaglieco
Nowadays HCCI combustion process is revealing the most useful technique for reducing pollutant emission from internal combustion engines. In the present paper, HCCI combustion was realized by means of single late injection at high pressure and heavy EGR, up to 50%. A transparent Direct Injection (DI) diesel engine equipped with high pressure Common Rail (CR) injection system was used. The engine was fed with commercial diesel fuel and ran in continuous mode. Digital imaging and spectroscopic techniques, with high temporal and spatial resolution, were applied to study the low temperature combustion process. Injection and combustion phases were analysed by digital imaging. Mixing process, autoignition and pollutants formation were investigated by Broadband Ultraviolet - Visible Extinction Spectroscopy (BUVES) and flame emission measurements. Radicals and species such as OH, CH and CO were detected in the combustion chamber.
2016-04-05
Technical Paper
2016-01-0771
Silvana Di Iorio, Agnese Magno, Ezio Mancaruso, Bianca Maria Vaglieco
Abstract This paper deals with the combustion behavior and exhaust emissions of a small compression ignition engine modified to operate in diesel/methane dual fuel mode. The engine is a three-cylinder, 1028 cm3 of displacement, equipped with a common rail injection system. The engine is provided with the production diesel oxidation catalyst. Intake manifold was modified in order to set up a gas injector managed by an external control unit. Experiments were carried out at different engine speeds and loads. For each engine operating condition, the majority of the total load was supplied by methane while a small percentage of the load was realized using diesel fuel; the latter was necessary to ignite the premixed charge of gaseous fuel. Thermodynamical analysis of the combustion phase was performed by in-cylinder pressure signal. Gas emissions and particulate matter were measured at the exhaust by commercial instruments.
2016-04-05
Technical Paper
2016-01-0810
Massimo Cardone, Ezio Mancaruso, Renato Marialto, Luigi Sequino, Bianca Maria Vaglieco
Abstract The interest of the vehicle producers in fulfillment emission legislations without adopting after treatment systems is driving to the use of non-conventional energy sources for modern engines. A previous test campaign dealing with the use of blends of diesel and propane in a CI engine has pointed out the potential of this non-conventional fuel for diesel engines. The soft adaptation of the common rail injection system and the potential benefits, in terms of engine performances and pollutant emissions, encourage the use of propane-diesel blends if an optimization of the injection strategies is performed. In this work, the performances of a propane-diesel mixture in a research diesel engine have been investigated. The injection strategies of Euro 5 calibration have been used as reference for the development of optimized strategies. The aim of the optimization process was to ensure the same engine power output and reduce the pollutant emissions.
2015-09-06
Technical Paper
2015-24-2461
Agnese Magno, Ezio Mancaruso, Bianca Maria Vaglieco
Abstract In the present activity, dual fuel operation was investigated in a single cylinder research engine. Methane was injected in the intake manifold while the diesel was delivered via the standard injector directly into the engine. The aim is to study the effect of increasing methane concentration at constant injected diesel amount on both pollutant emissions and combustion evolution in an optically accessible engine. Emissions are in line with those previously published by other authors, it is noted no PM and constant NOx emissions. Moreover, a decrease of the brake specific CO emissions and an increase of the brake specific THC for the operating condition with the highest premixed ratio was detected. THC was mainly constituted by methane unburned hydrocarbons. Combustion resulted more or less stable. Moreover, via both UV-VIS spectroscopy and digital imaging, the spatial distribution of several species involved in the combustion process was analyzed.
2015-09-06
Technical Paper
2015-24-2477
Ezio Mancaruso, Renato Marialto, Luigi Sequino, Bianca Maria Vaglieco, Massimo Cardone
Abstract Blends of propane-diesel fuel can be used in direct injection diesel engines to improve the air-fuel mixing and the premixed combustion phase, and to reduce pollutant emissions. The potential benefits of usinf propane in diesel engines are both environmental and economic; furthermore, its use does not require changes to the compression ratio of conventional diesel engines. The present paper describes an experimental investigation of the injection process for different liquid preformed blends of propane-diesel fuel in an optically accessible Common Rail diesel engine. Slight modifications of the injection system were required in order to operate with a blend of propane-diesel fuel. Pure diesel fuel and two propane-diesel mixtures at different mass ratios were tested (20% and 40% in mass of propane named P20 and P40). First, injection in air at ambient temperature and atmospheric pressure were performed to verify the functionality of the modified Common Rail injection system.
2015-09-06
Journal Article
2015-24-2416
Roberto Finesso, Ezio Spessa, Ezio Mancaruso, Luigi Sequino, Bianca Maria Vaglieco
Abstract An investigation has been carried out on the spray penetration and soot formation processes in a research diesel engine by means of a quasi-dimensional multizone combustion model. The model integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model, and is capable of predicting the spray formation, combustion and soot formation processes in the combustion chamber. The multizone model was used to analyze three operating conditions, i.e., a zero load point (BMEP = 0 bar at 1000 rpm), a medium load point (BMEP = 5 bar at 2000 rpm) and a medium-high load point (BMEP = 10 bar at 2000 rpm). These conditions were experimentally tested in an optical single cylinder engine with the combustion system configuration of a 2.0L Euro4 GM diesel engine for passenger car applications.
2015-09-06
Technical Paper
2015-24-2445
Carlo Beatrice, Gabriele Di Blasio, Ezio Mancaruso, Luigi Sequino, Bianca Maria Vaglieco
Abstract In this paper, a detailed analysis of combustion and emissions is carried out on both metal and optical light duty diesel engines equipped with up-to-date combustion architecture. Both engines were fed with glycerol ethers mixture (GEM) in blend (10% and 20% v/v) within a commercial diesel fuel. The engines ran in significant operating points in the NEDC (New European Driving Cycle) emission homologation area. The results of the experimental campaign on the metal engine show comparable performances between the diesel/GEM blends and the diesel fuel and demonstrate benefits mainly in terms of soot production. The exhaust particles diameters of diesel/GEM blends shift toward smaller dimensions and the total number decreases. Moreover, at lower load conditions, the outputs show a worsening of the unburnt mainly ascribable to the fuel characteristics.
2011-09-11
Journal Article
2011-24-0061
Ezio Mancaruso, Bianca Maria Vaglieco
In this work, optical diagnostics were applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat bio-ethanol was performed in the intake manifold and European commercial diesel fuel was injected into the cylinder. Different amounts of bio-ethanol were injected in order to create PCCI combustion with high levels of pre-combustion mixing, and to ensure low equivalence ratio and low flame temperatures too. UV-Visible imaging and spectroscopic measurements were performed in the engine in order to investigate the autoignition of the charge and the combustion process, respectively. In particular, the detection of the species involved in the combustion, like OH, HCO, and CH, was performed. The relevance of the radicals and species on PCCI were evaluated and compared with the data from thermodynamic analysis.
2011-09-11
Technical Paper
2011-24-0169
Ferdinando Taglialatela-Scafati, Mario Lavorgna, Ezio Mancaruso
In order to meet the stricter and stricter emission regulations, cleaner combustion concepts for Diesel engines are being progressively introduced. These new combustion approaches often requires closed loop control systems with real time information about combustion quality. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine block vibration signal and several authors tried to reconstruct the pressure cycle on the basis of information coming from accelerometers mounted on engine block. This paper proposes a method, based on the analysis of the engine vibration signal, for the diagnosis of combustion process in a Diesel engine.
2011-09-11
Technical Paper
2011-24-0161
Katarzyna Bizon, Gaetano Continillo, Ezio Mancaruso, Bianca Maria Vaglieco
This study aims at building an efficient and robust radial basis function (RBF) artificial neural network (ANN), to reconstruct the in-cylinder pressure of a diesel engine starting from the signal of a low-cost accelerometer placed on the engine block. The accelerometer is a perfect non-intrusive replacement for expensive probes and is prospectively suitable for production vehicles. The RBF network is trained using measurements from different engine operating conditions. Training data are composed of time series from the accelerometer and corresponding measured in-cylinder pressure signals. The RBF network is then validated using data not included in training and the results show good correspondence between measured and reconstructed pressure signal. Various network parameters are used to optimize the network quality.
2011-09-11
Technical Paper
2011-24-0043
Ezio Mancaruso, Luigi Sequino, Bianca Maria Vaglieco
In the present paper, infrared (IR) measurements were performed in order to study the development of injection and combustion in a transparent Euro 5 diesel engine operating in premixed mode. An elongated single-cylinder engine equipped with the multi-cylinder head of commercial passenger car and with common rail (CR) injection system, respectively, was used. A sapphire window was set in the bottom of the combustion chamber, and a sapphire ring was placed between the head and the top of the cylinder line. Measurements were carried out through both accesses by a new high-speed infrared (IR) digital imaging system obtaining information that was difficult to achieve by the conventional UV-visible camera. IR camera was able to detect the emitted light in the wavelength range 1.5-5 μm that is relevant for the emission bands of CO₂ and H₂O. The evaporation phase of pre and main injection, and subsequent combustion evolution were analyzed.
Viewing 1 to 30 of 35

Filter

  • Range:
    to:
  • Year: