Viewing 1 to 30 of 31
Technical Paper
Tao Bo, Fabian Mauss, Linda M. Beck
This paper explains the principle and advantages of the Ignition Progress Variable Library (IPV-Library) approach and its use in predicting engine related premixed, non-premixed and compression ignited combustion events. The implementation of IPV-Library model in the engine-focused CFD code VECTIS is described. To demonstrate the application of the model in predicting various types of combustion, computational results from a 2-stroke HCCI engine, a premixed spark ignition engine and an HSDI diesel engine are presented, together with some comparisons with engine test data.
Technical Paper
Martin Tuner, Karin Frojd, Lars Seidel, Fabian Mauss
Partially Premixed Combustion (PPC) engines have demonstrated a potential for high efficiency and low emissions operation. To be able to study the combustion in detail but also to perform parametric studies on the potential of the PPC concept a one dimensional (1D) engine simulation tool was used with 1; a prescribed burn rate 2; predictive combustion tool with reduced chemical model and 3; predictive combustion tool with detailed chemical models. Results indicate that fast executing reduced chemistry work reasonably well in predicting PPC performance and that n-decane is possibly a suitable diesel substitute in PPC modeling while n-heptane is not.
Journal Article
Karin Fröjd, Fabian Mauss
Interactions between in-cylinder combustion and emission aftertreatment need to be understood for optimizing the overall powertrain system. Numerical investigations can aid this process. For this purpose, simple and numerically fast, but still accurate models are needed for in-cylinder combustion and exhaust aftertreatment. The chemical processes must be represented in sufficient detail to predict engine power, fuel consumption, and tailpipe emission levels of NOx, soot, CO and unburned hydrocarbons. This paper reports on a new transient one-dimensional catalyst model. This model makes use of a detailed kinetic mechanism to describe the catalytic reactions. A single-channel or a set of representative channels are used in the presented approach. Each channel is discretized into a number of cells. Each cell is treated as a perfectly stirred reactor (PSR) with a thin film layer for washcoat treatment. Heat and mass transport coefficients are calculated from Nusselt and Sherwood laws.
Technical Paper
Andrea Matrisciano, Michal Pasternak, Xiaoxiao Wang, Oleksiy Antoshkiv, Fabian Mauss, Peter Berg
Abstract In this work are presented experimental and simulated data from a one-cylinder direct injected Diesel engine fuelled with Diesel, two different biodiesel blends and pure biodiesel at one engine operating point. The modeling approach focuses on testing and rating biodiesel surrogate fuel blends by means of combustion and emission behavior. Detailed kinetic mechanisms are adopted to evaluate the fuel-blends performances under both reactor and diesel engine conditions. In the first part of the paper, the experimental engine setup is presented. Thereafter the choice of the surrogate fuel blends, consisting of n-decane, α-methyl-naphtalene and methyl-decanoate, are verified by the help of experiments from the literature. The direct injection stochastic reactor model (DI-SRM) is employed to simulate combustion and engine exhaust emissions (NOx, HC, CO and CO2), which are compared to the experimental data.
Journal Article
Galin Nakov, Fabian Mauss, Paul Wenzel, Rüdiger Steiner, Christian Krüger, Yongzhe Zhang, Rajesh Rawat, Anders Borg, Cathleen Perlman, Karin Fröjd, Harry Lehtiniemi
The subject of this work is 3D numerical simulations of combustion and soot emissions for a passenger car diesel engine. The CFD code STAR-CD version 3.26 [1] is used to resolve the flowfield. Soot is modeled using a detailed kinetic soot model described by Mauss [2]. The model includes a detailed description of the formation of polyaromatic hydrocarbons. The coupling between the turbulent flowfield and the soot model is achieved through a flamelet library approach, with transport of the moments of the soot particle size distribution function as outlined by Wenzel et al. [3]. In this work we extended this approach by considering acetylene feedback between the soot model and the combustion model. The model was further improved by using new gas-phase kinetics and new fitting procedures for the flamelet soot library.
Technical Paper
Marcus Lundgren, Martin Tuner, Bengt Johansson, Simon Bjerkborn, Karin Frojd, Arne Andersson, Fabian Mauss, Bincheng Jiang
The relatively new combustion concept known as partially premixed combustion (PPC) has high efficiency and low emissions. However, there are still challenges when it comes to fully understanding and implementing PPC. Thus a predictive combustion tool was used to gain further insight into the combustion process in late cycle mixing. The modeling tool is a stochastic reactor model (SRM) based on probability density functions (PDF). The model requires less computational time than a similar study using computational fluid dynamics (CFD). A novel approach with a two-zone SRM was used to capture the behavior of the partially premixed or stratified zones prior to ignition. This study focuses on PPC mixing conditions and the use of an efficient analysis approach.
Journal Article
Simon Bjerkborn, Karin Frojd, Cathleen Perlman, Fabian Mauss
This paper reports on a turbulent flame propagation model combined with a zero-dimensional two-zone stochastic reactor model (SRM) for efficient predictive SI in-cylinder combustion calculations. The SRM is a probability density function based model utilizing detailed chemistry, which allows for accurate knock prediction. The new model makes it possible to - in addition - study the effects of fuel chemistry on flame propagation, yielding a predictive tool for efficient SI in-cylinder calculations with all benefits of detailed kinetics. The turbulent flame propagation model is based on a recent analytically derived formula by Kolla et al. It was simplified to better suit SI engine modelling, while retaining the features allowing for general application. Parameters which could be assumed constant for a large spectrum of situations were replaced with a small number of user parameters, for which assumed default values were found to provide a good fit to a range of cases.
Technical Paper
Cathleen Perlman, Karin Frojd, Lars Seidel, Martin Tuner, Fabian Mauss
This paper reports on a fast predictive combustion tool employing detailed chemistry. The model is a stochastic reactor based, discretised probability density function model, without spatial resolution. Employing detailed chemistry has the potential of predicting emissions, but generally results in very high CPU costs. Here it is shown that CPU times of a couple of minutes per cycle can be reached when applying detailed chemistry, and CPU times below 10 seconds per cycle can be reached when using reduced chemistry while still catching in-cylinder in-homogeneities. This makes the tool usable for efficient engine performance mapping and optimisation. To meet CPU time requirements, automatically load balancing parallelisation was included in the model. This allowed for an almost linear CPU speed-up with number of cores available.
Technical Paper
Michal Pasternak, Fabian Mauss, Gábor Janiga, Dominique Thévenin
A self-calibrating model for Diesel engine simulations is presented. The overall model consists of a zero-dimensional direct injection stochastic reactor model (DI-SRM) for engine in-cylinder processes simulations and a package of optimization algorithms (OPAL) suitable for solving various optimization, automatization and search problems. In the DI-SRM, based on an extensive model parameters study, the mixing time history that affects the level of in-cylinder turbulence was selected as a main calibration parameter. As targets during calibration against the experimental data, in-cylinder pressure history and engine-out emissions, including nitrogen oxides and unburned hydrocarbons were chosen. The calibration task was solved using DI-SRM and OPAL working as an integrated tool. Within OPAL, genetic algorithms (GA) were used to determine model constants necessary for calibrating. Engine-out emissions in DI-SRM were calculated based on the reduced mechanism of n-heptane.
Technical Paper
Andre Saitzkoff, Raymond Reinmann, Fabian Mauss, Magnus Glavmo
A model based on an ionization equilibrium analysis, that can relate the ion current to the state of the gas inside the combustion volume, has been presented earlier. This paper introduces several additional models, that together with the previous model have the purpose of improving the pressure predictions. One of the models is a chemistry model that enables us to realistically consider the current contribution from the most relevant species. A second model can predict the crank angle of the peak pressure and thereby substantially increase the accuracy of the pressure predictions. Several other additions and improvements have been introduced, including support for part load engine conditions.
Technical Paper
Sebastian Mosbach, Markus Kraft, Amit Bhave, Fabian Mauss, J. Hunter Mack, Robert W. Dibble
We numerically simulate a Homogeneous Charge Compression Ignition (HCCI) engine fuelled with a blend of ethanol and diethyl ether by means of a stochastic reactor model (SRM). A 1D CFD code is employed to calculate gas flow through the engine, whilst the SRM accounts for combustion and convective heat transfer. The results of our simulations are compared to experimental measurements obtained using a Caterpillar CAT3401 single-cylinder Diesel engine modified for HCCI operation. We consider emissions of CO, CO2 and unburnt hydrocarbons as functions of the crank angle at 50% heat release. In addition, we establish the dependence of ignition timing, combustion duration, and emissions on the mixture ratio of the two fuel components. Good qualitative agreement is found between our computations and the available experimental data.
Technical Paper
Per Amnéus, Martin Tunér, Fabian Mauss, Robert Collin, Jenny Nygren, Mattias Richter, Marcus Aldén, Markus Kraft, Amit Bhave, Leif Hildingsson, Bengt Johansson
Concentrations of hydroxyl radicals and formaldehyde were calculated using homogeneous (HRM) and stochastic reactor models (SRM), and the result was compared to LIF-measurements from an optically accessed iso-octane / n-heptane fuelled homogeneous charge compression ignition (HCCI) engine. The comparison was at first conducted from averaged total concentrations / signal strengths over the entire combustion volume, which showed a good qualitative agreement between experiments and calculations. Time- and the calculation inlet temperature resolved concentrations of formaldehyde and hydroxyl radicals obtained through HRM are presented. Probability density plots (PDPs) through SRM calculations and LIF-measurements are presented and compared, showing a very good agreement considering their delicate and sensitive nature.
Technical Paper
Martin Tuner, Edward S. Blurock, Fabian Mauss
By dividing the combustion process into several phases with phase optimized skeletal mechanisms (POSM), gains in calculation speed were realized with virtually no loss in accuracy. A skeletal mechanism is a reduced mechanism where only the significant species, determined through a set of parameters (one for each species), remain with respect to a detailed mechanism. The parameter is based on a combination of sensitivity and flow analysis. Within the POSM method machine learning algorithms are used to automatically determine and recognize the major phases. Reduction is achieved by keeping only the significant species with respect to each phase. Each phase has a different mechanism, derived from the original and each is smaller than the original.
Technical Paper
Harry Lehtiniemi, Fabian Mauss, Michael Balthasar, Ingemar Magnusson
In this work, we present an unsteady flamelet progress variable approach for diesel engine CFD combustion modeling. The progress variable is based on sensible enthalpy integrated over the flamelet and describes the transient flamelet ignition process. By using an unsteady flamelet library for the progress variable, the impact of local effects, for example variations in the turbulence field, effects of wall heat transfer etc. on the autoignition chemistry can be considered on a cell level. The coupling between the unsteady flamelet library and the transport equation for total enthalpy follows the ideas of the representative interactive flamelet approach. Since the progress variable gives a direct description of the state in the flamelet, the method can be compared to having a flamelet in each computational cell in the CFD grid.
Technical Paper
Amit Bhave, Markus Kraft, Fabian Mauss, Aaron Oakley, Hua Zhao
We present a computational tool to develop an exhaust gas recirculation (EGR) - air-fuel ratio (AFR) operating range for homogeneous charge compression ignition (HCCI) engines. A single cylinder Ricardo E-6 engine running in HCCI mode, with external EGR is simulated using an improved probability density function (PDF) based engine cycle model. For a base case, the in-cylinder temperature and unburned hydrocarbon emissions predicted by the model show a satisfactory agreement with measurements [Oakley et al., SAE Paper 2001-01-3606]. Furthermore, the model is applied to develop the operating range for various combustion parameters, emissions and engine parameters with respect to the air-fuel ratio and the amount of EGR used. The model predictions agree reasonably well with the experimental results for various parameters over the entire EGR-AFR operating range thus proving the robustness of the PDF based model.
Technical Paper
Per Amnéus, Fabian Mauss, Markus Kraft, Andreas Vressner, Bengt Johansson
Calculations using homogeneous and stochastic reactor models were performed in order to find an explanation to observed properties of NOx HCCI engines. It was found that for moderate NOx levels, N2O reactions play an important role in the NOx formation. Further, the high proportions of NO2 found in from some HCCI engines is due to high temperature inhomogeneities, poor mixing and slow overall combustion. N2O is often emitted from HCCI combustion. The levels of NOx in the exhausts are highly sensitive to temperature; however N2O has a weak negative dependence on temperature. While fuel rich operation naturally leads to high temperatures and thus high NOx levels; once the temperature effects are decoupled the fuel rich conditions themselves has a favorable effect on low-NOx engine operation.
Technical Paper
Harry Lehtiniemi, Yongzhe Zhang, Rajesh Rawat, Fabian Mauss
A transient interactive flamelet model and a transient flamelet library based model are used to model a medium-duty diesel fueled engine operating in PCCI mode. The simulations are performed with and without the source term accounting for evaporation in the mixture fraction variance equation. Reasonable agreement is found with the experiments with both models. The effect of the evaporation source term in the mixture fraction variance equation is different for the different transient flamelet approaches. For the transient interactive flamelet model the ignition onset is delayed as a consequence of the higher mixture fraction variance, which leads to a higher scalar dissipation rate. The evaporation source term does not affect the global characteristics of the ignition event for the transient flamelet progress variable model, but locally the initial combustion is occurring differently.
Technical Paper
Martin Tunér, Michał Pasternak, Fabian Mauss, Henry Bensler
In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Technical Paper
Michał Pasternak, Fabian Mauss, Henry Bensler
An investigation on reducing the set of modeling parameters for engine cycle simulation is presented. The investigation considers a detailed kinetic model for combustion and emissions predictions coupled to a complete cycle simulation tool applied to a modern Diesel engine. The analysis is based on a previously developed method that combines a 1-D gas dynamics model with a stochastic reactor model for direct injection engines (SRM-DI). Initially, the global and instantaneous performance parameters of a Diesel engine were simulated at different operating conditions. The model was validated and the simulated results were compared to experimental data to assess the quality of the model. Afterwards, the influence of the chosen modeling parameters on engine performance, such as in-cylinder pressure, emissions and global performances, were analyzed. The mixing time proved to be the most important modeling parameter for the stochastic reactor model.
Journal Article
Henrik Hoffmeyer, Emanuela Montefrancesco, Linda Beck, Jürgen Willand, Florian Ziebart, Fabian Mauss
Today’s car manufactures inevitably have to focus on the reduction of fuel consumption while maintaining high performance standards. In this respect, the downsized turbocharged DISI (Direct Injection Spark Ignition) engine represents an appealing solution. However, downsizing is limited because of knocking phenomena occurring at high- and full-load conditions due to autoignition of the unburned mixture ahead the flame front. A common way of reducing knock tendencies is provided by Exhaust Gas Recirculation (EGR). However, EGR modifies the chemical composition of the cylinder charge and recirculated species like nitric oxide (NO) or unburned Hydrocarbons (HC) particularly increase the reactivity of the unburned mixture. In other words, the EGR influences the Octane Number (ON) of the in-cylinder gases.
Technical Paper
Tim Franken, Fabian Mauss
Stringent exhaust emission limits and new vehicle test cycles require sophisticated operating strategies for future diesel engines. Therefore, a methodology for predictive combustion simulation, focused on multiple injection operating points is proposed in this paper. The model is designated for engine performance map simulations, to improve prediction of NOx, CO and HC emissions. The combustion process is calculated using a zero dimensional direct injection stochastic reactor model based on a probability density function approach. Further, the formation of exhaust emissions is described using a detailed reaction mechanism for n-heptane, which involves 56 Species and 206 reactions. The model includes the interaction between turbulence and chemistry effects by using a variable mixing time profile. Thus, one is able to capture the effects of mixture inhomogeneities on NOx, CO and HC emission formation.
Technical Paper
Harry Lehtiniemi, Anders Borg, Fabian Mauss
Abstract Several models for ignition, combustion and emission formation under diesel engine conditions for multi-dimensional computational fluid dynamics have been proposed in the past. It has been recognized that the use of a reasonably detailed chemistry model improves the combustion and emission prediction especially under low temperature and high exhaust gas recirculation conditions. The coupling of the combustion chemistry and the turbulent flow can be achieved with different assumptions. In this paper we investigate a selection of n-heptane spray experiments published by the Engine Combustion Network (ECN spray H) with three different combustion models: well-stirred reactor model, transient interactive flamelet model and progress variable based conditional moment closure. All models cater for the use of detailed chemistry, while the turbulence-chemistry interaction modeling and the ability to consider local effects differ.
Technical Paper
Jana Aslanjan, Christian Klauer, Cathleen Perlman, Vivien Günther, Fabian Mauss
Abstract The three-way catalytic converter (TWC) is the most common catalyst for gasoline engine exhaust gas after treatment. The reduction of carbon monoxide (CO), nitrogen oxides (NOx) and unburned hydrocarbons (HC) is achieved via oxidation of carbon monoxide and hydrocarbons, and reduction of nitrogen oxides. These conversion effects were simulated in previous works using single-channel approaches and detailed kinetic models. In addition to the single-channel model multiple representative catalyst channels are used in this work to take heat transfer between the channels into account. Furthermore, inlet temperature distribution is considered. Each channel is split into a user given number of cells and each cell is treated like a perfectly stirred reactor (PSR). The simulation is validated against an experimental four-stroke engine setup with emission outputs fed into a TWC.
Technical Paper
Corinna Netzer, Lars Seidel, Michal Pasternak, Christian Klauer, Cathleen Perlman, Frederic Ravet, Fabian Mauss
Abstract Engine knock is an important phenomenon that needs consideration in the development of gasoline fueled engines. In our days, this development is supported by the use of numerical simulation tools to further understand and subsequently predict in-cylinder processes. In this work, a model tool chain based on detailed chemical and physical models is proposed to predict the auto-ignition behavior of fuels with different octane ratings and to evaluate the transition from harmless auto-ignitive deflagration to knocking combustion. In our method, the auto-ignition and emissions are calculated based on a new reaction scheme for mixtures of iso-octane, n-heptane, toluene and ethanol (Ethanol consisting Toluene Reference Fuel, ETRF). The reaction scheme is validated for a wide range of mixtures and every desired mixture of the four fuel components can be applied in the engine simulation.
Technical Paper
Tim Franken, Arnd Sommerhoff, Werner Willems, Andrea Matrisciano, Harry Lehtiniemi, Anders Borg, Corinna Netzer, Fabian Mauss
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Technical Paper
Andrea Matrisciano, Tim Franken, Cathleen Perlman, Anders Borg, Harry Lehtiniemi, Fabian Mauss
Abstract A novel 0-D Probability Density Function (PDF) based approach for the modelling of Diesel combustion using tabulated chemistry is presented. The Direct Injection Stochastic Reactor Model (DI-SRM) by Pasternak et al. has been extended with a progress variable based framework allowing the use of a pre-calculated auto-ignition table. Auto-ignition is tabulated through adiabatic constant pressure reactor calculations. The tabulated chemistry based implementation has been assessed against the previously presented DI-SRM version by Pasternak et al. where chemical reactions are solved online. The chemical mechanism used in this work for both, online chemistry run and table generation, is an extended version of the scheme presented by Nawdial et al. The main fuel species are n-decane, α-methylnaphthalene and methyl-decanoate giving a size of 463 species and 7600 reactions.
Technical Paper
Michal Pasternak, Fabian Mauss, Fabio Xavier, Michael Rieß, Marc Sens, Andreas Benz
Abstract A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Technical Paper
Andrea Matrisciano, Anders Borg, Cathleen Perlman, Harry Lehtiniemi, Michal Pasternak, Fabian Mauss
In this work a soot source term tabulation strategy for soot predictions under Diesel engine conditions within the zero-dimensional Direct Injection Stochastic Reactor Model (DI-SRM) framework is presented. The DI-SRM accounts for detailed chemistry, in-homogeneities in the combustion chamber and turbulence-chemistry interactions. The existing implementation [1] was extended with a framework facilitating the use of tabulated soot source terms. The implementation allows now for using soot source terms provided by an online chemistry calculation, and for the use of a pre-calculated flamelet soot source term library. Diesel engine calculations were performed using the same detailed kinetic soot model in both configurations. The chemical mechanism for n-heptane used in this work is taken from Zeuch et al. [2] and consists of 121 species and 973 reactions including PAH and thermal NO chemistry. The engine case presented in [1] is used also for this work.
Technical Paper
Shahrokh Hajireza, Bengt Sundén, Fabian Mauss
A zero-dimensional, three-zone model is developed in order to study the gas thermodynamic characteristics and its relation to knock in SI engines. The first zone is the zone behind the flame front, i.e. the burned gas products. The second zone is the unburned gas ahead of the flame front. The end gas adjacent to the wall, in the boundary layer, is not included in the second zone but it is treated as a separate zone, i.e. the third zone. A detailed analysis of the gas thermodynamic state, including heat transfer analysis between the zones and the walls and mass transfer analysis between the zones combined with a detailed chemical kinetic mechanism in each zone have been performed. The effects of piston movement, flame propagation and transient behavior of the thermal boundary layer are modeled. A sudden rise of pressure and temperature and associated heat release in the end gas are calculated if autoignition occurs.
Technical Paper
Shahrokh Hajireza, Bengt Sundén, Fabian Mauss
This paper reports an one–dimensional modeling procedure of the hot spot autoignition with a detailed chemistry and multi–species transport in the end gas in an SI engine. The governing equations for continuity of mass, momentum, energy and species for an one–dimensional, unsteady, compressible, laminar, reacting flow and thermal fields are discretized and solved by a fully implicit method. A chemical kinetic mechanism is used for the primary reference fuels n–heptane and iso–octane. This mechanism contains 510 chemical reactions and 75 species. The change of the cylinder pressure is calculated from both flame propagation and piston movement. The turbulent velocity of the propagating flame is modeled by the Wiebe function. Adiabatic conditions, calculated by minimizing Gibb's free energy at each time step, are assumed behind the flame front in the burned gas.
Viewing 1 to 30 of 31


  • Range:
  • Year: