Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Thermogravimetric Analysis (TGA) Test Methods

2022-06-28
CURRENT
AS6171/10
This test method provides the capabilities, limitations, and suggested possible applications of TGA as it pertains to the detection of counterfeit electronic components. Additionally, this document outlines requirements associated with the application of TGA including: equipment requirements, test sample requirements, methodology, control and calibration, data analysis, reporting, and qualification and certification. If AS6171/10 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Design Recovery Test Methods

2016-10-30
CURRENT
AS6171/11
This method outlines the requirements, capabilities, and limitations associated with the application of Design Recovery for the detection of counterfeit electronic parts including: Operator training; Sample preparation; Imaging techniques; Data interpretation; Design/functional matching; Equipment maintenance and; Reporting of data. The method is primarily aimed at analyses performed by circuit delayering and imaging with a scanning electron microscope or optical microscope; however, many of the concepts are applicable to other microscope and probing techniques to recover design data. The method is not intended for the purpose of manufacturing copies of a device, but rather to compare images or recover the design for determination of authenticity. If AS6171/11 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Design Recovery Test Methods

2018-08-24
WIP
AS6171/11A
This method outlines the requirements, capabilities, and limitations associated with the application of Design Recovery for the detection of counterfeit electronic parts including: Operator training; Sample preparation; Imaging techniques; Data interpretation; Design/functional matching; Equipment maintenance and; Reporting of data. The method is primarily aimed at analyses performed by circuit delayering and imaging with a scanning electron microscope or optical microscope; however, many of the concepts are applicable to other microscope and probing techniques to recover design data. The method is not intended for the purpose of manufacturing copies of a device, but rather to compare images or recover the design for determination of authenticity. If AS6171/11 is invoked in the contract, the base document, AS6171 General Requirements shall also apply. SAE Counterfeit Defect Coverage Tool
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Acoustic Microscopy (AM) Test Methods

2016-10-30
CURRENT
AS6171/6
Through the use of ultra-high frequency ultrasound, typically above 10 MHz, Acoustic Microscopy (AM) non-destructively finds and characterizes physical features and latent defects (visualization of interior features in a layer by layer process) - such as material continuity and discontinuities, sub-surface flaws, cracks, voids, delaminations and porosity. AM observed features and defects can be indicators that the components were improperly handled, stored, altered or previously used. If AS6171/6 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Fourier Transform Infrared Spectroscopy (FTIR) Test Methods

2022-06-28
CURRENT
AS6171/9
This document defines capabilities and limitations of FTIR spectroscopy as it pertains to counterfeit electronic component detection and suggests possible applications to these ends. Additionally, this document outlines requirements associated with the application of FTIR spectroscopy including: operator training, sample preparation, various sampling techniques, data interpretation, computerized spectral matching including pass/fail criteria, equipment maintenance, and reporting of data. The discussion is primarily aimed at analyses performed in the mid-infrared (IR) from 400 to 4000 wavenumbers; however, many of the concepts are applicable to the near and far IR. If AS6171/9 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Test Methods Standard; General Requirements, Suspect/Counterfeit, Electrical, Electronic, and Electromechanical Parts

2019-03-26
WIP
AS6171B
This SAE Aerospace Standard (AS) standardizes inspection and test procedures, workmanship criteria, and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) parts. The requirements of this document apply once a decision is made to use parts with unknown chain of custody that do not have pedigree back to the original component manufacturer or have been acquired from a broker or independent distributor, or when there are other known risk elements that result in the User/Requester to have concerns about potential SC EEE parts. The tests specified by this standard may also detect occurrences of malicious tampering, although the current version of this standard is not designed specifically for this purpose. This standard ensures consistency across the supply chain for test techniques and requirements based on assessed risk associated with the application, component, supplier, and other relevant risk factors.
Standard

Test Methods Standard; General Requirements, Suspect/Counterfeit, Electrical, Electronic, and Electromechanical Parts

2018-04-18
CURRENT
AS6171A
This SAE Aerospace Standard (AS) standardizes inspection and test procedures, workmanship criteria, and minimum training and certification requirements to detect Suspect/Counterfeit (SC) Electrical, Electronic, and Electromechanical (EEE) parts. The requirements of this document apply once a decision is made to use parts with unknown chain of custody that do not have pedigree back to the original component manufacturer or have been acquired from a broker or independent distributor, or when there are other known risk elements that result in the User/Requester to have concerns about potential SC EEE parts. The tests specified by this standard may also detect occurrences of malicious tampering, although the current version of this standard is not designed specifically for this purpose. This standard ensures consistency across the supply chain for test techniques and requirements based on assessed risk associated with the application, component, supplier, and other relevant risk factors.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by External Visual Inspection, Remarking and Resurfacing, and Surface Texture Analysis Test Methods

2016-10-30
HISTORICAL
AS6171/2
This document describes the requirements of the following test methods for counterfeit detection of electronic components: a Method A: General External Visual Inspection (EVI), Sample Selection, and Handling b Method B: Detailed EVI c Method C: Testing for Remarking and Resurfacing d Method D: Surface Texture Analysis by SEM NOTE: The scope of this document was focused on leaded electronic components, microcircuits, multi-chip modules (MCMs), and hybrids. Other electronic components may require evaluations not specified in this procedure. Where applicable this document can be used as a guide but additional inspections or criteria would need to be developed and documented to thoroughly evaluate these additional part types.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by External Visual Inspection, Remarking and Resurfacing, and Surface Texture Analysis Using SEM Test Methods

2017-05-11
CURRENT
AS6171/2A
This document describes the requirements of the following test methods for counterfeit detection of electronic components: a Method A: General EVI, Sample Selection, and Handling b Method B: Detailed EVI, including Part Weight measurement c Method C: Testing for Remarking d Method D: Testing for Resurfacing e Method E: Part Dimensions measurement f Method F: Surface Texture Analysis using SEM The scope of this document is focused on leaded electronic components, microcircuits, multi-chip modules (MCMs), and hybrids. Other EEE components may require evaluations not specified in this procedure. Where applicable this document can be used as a guide. Additional inspections or criteria would need to be developed and documented to thoroughly evaluate these additional part types. If AS6171/2 is invoked in the contract, the base document, AS6171 General Requirements shall also apply.
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by General and Detailed External Visual Inspection (EVI), Remarking and Resurfacing, and Part Dimension Measurement

2020-11-24
WIP
AS6171/2B
This document contains a list of EVI tests that can be specified by the Requester to detect Suspect/Counterfeit EEE Parts. The following EVI tests described in this document are listed in 3.4 of AS6171 General Requirements: Method A: General EVI Method B: Detailed EVI, including Part Weight Measurement Method C: Testing for Remarking Method D: Testing for Resurfacing Method E: Part Dimensions Measurement When the SOW or the PO includes Part Packaging test(s) (refer to AS6171/15), the Responsible Test Laboratory (RTL) shall ensure that the Part Packaging test(s) are completed prior to starting the EVI test(s). This document is focused on EEE parts (herein may be referred to as “EEE parts” or “parts”). Although the examples in this document focus on microcircuits, this document applies to all EEE parts listed in the Applicability Matrix (Appendix A of AS6171 General Requirements).
Standard

Techniques for Suspect/Counterfeit EEE Parts Detection by Radiological Test Methods

2022-06-28
CURRENT
AS6171/5
The intent of this document is to define the methodology for suspect parts inspection using radiological inspection. The purpose of radiology for suspect counterfeit part inspection is to detect deliberate misrepresentation of a part, either at the part distributor or original equipment manufacturer (OEM) level. Radiological inspection can also potentially detect unintentional damage to the part resulting from improper removal of part from assemblies, which may include, but not limited to, prolonged elevated temperature exposure during desoldering operations or mechanical stresses during removal. Radiological inspection of electronics includes film radiography and filmless radiography such as digital radiography (DR), real time radiography (RTR), and computed tomography (CT). Radiology is an important tool used in part verification of microelectronic devices.
X