Criteria

Text:
Author:
Display:

Results

Viewing 1 to 30 of 55
2011-04-12
Journal Article
2011-01-1297
Robert Cooley, Davide Vezza, Shawn Midlam-Mohler, Giorgio Rizzoni
When developing a new engine control strategy, some of the important issues are cost, resource minimization, and quality improvement. This paper outlines how a model based approach was used to develop an engine control strategy for an Extended Range Electric Vehicle (EREV). The outlined approach allowed the development team to minimize the required number of experiments and to complete much of the control development and calibration before implementing the control strategy in the vehicle. It will be shown how models of different fidelity, from map-based models, to mean value models, to 1-D gas dynamics models were generated and used to develop the engine control system. The application of real time capable models for Hardware-in-the-Loop testing will also be shown.
2010-04-12
Technical Paper
2010-01-1220
Marcello Canova, Fabio Chiara, Giorgio Rizzoni, Yue-Yun Wang
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
2009-09-13
Technical Paper
2009-24-0071
Vincenzo Marano, Pinak Tulpule, Stephanie Stockar, Simona Onori, Giorgio Rizzoni
Plug-In Hybrid Vehicles (PHEVs) represent the middle point between Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs), thus combining benefits of the two architectures. PHEVs can achieve very high fuel economy while preserving full functionality of hybrids - long driving range, easy refueling, lower emissions etc. These advantages come at an expense of added complexity in terms of available fuel. The PHEV battery is recharged both though regenerative braking and directly by the grid thus adding extra dimension to the control problem. Along with the minimization of the fuel consumption, the amount of electricity taken from the power grid should be also considered, therefore the electricity generation mix and price become additional parameters that should be included in the cost function.
2009-09-13
Journal Article
2009-24-0122
Marcello Canova, Fabio Chiara, Giorgio Rizzoni, Yue-Yun Wang
Two-stage turbochargers are a recent solution to improve engine performance. The large flexibility of these systems, able to operate in different modes, can determine a reduction of the turbo-lag phenomenon and improve the engine tuning. However, the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization to maximize the benefits of this technology. In addition, the design and calibration of the control system is particularly complex. The transitioning between single stage and two-stage operations poses further control issues. In this scenario a model-based approach could be a convenient and effective solution to investigate optimization, calibration and control issues, provided the developed models retain high accuracy, limited calibration effort and the ability to run in real time.
2014-04-01
Journal Article
2014-01-1920
Amanda Hyde, Shawn Midlam-Mohler, Giorgio Rizzoni
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels.
2013-10-14
Technical Paper
2013-01-2491
Katherine Bovee, Amanda Hyde, Matthew Yard, Eric Gallo, Andrew Garcia, Matthew Organiscak, Andrew Huster, Margaret Yatsko, Jason Ward, Shawn Midlam-Mohler, Giorgio Rizzoni
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 51 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the fabrication and control implementation process followed by the Ohio State team during Year 2 of the competition. The fabrication process includes finalizing designs based on identified requirements, building and assembling components, and performing extensive validation testing on the mechanical, electrical and control systems.
1998-02-23
Technical Paper
980795
Piero Azzoni, Davide Moro, Fabrizio Ponti, Giorgio Rizzoni
Electronic throttle control is increasingly being considered as a viable alternative to conventional air management systems in modern spark-ignition engines. In such a scheme, driver throttle commands are interpreted by the powertrain control module together with many other inputs; rather than directly commanding throttle position, the driver is now simply requesting torque - a request that needs to be appropriately interpreted by the control module. Engine management under these conditions will require optimal control of the engine torque required by the various vehicle subsystems, ranging from HVAC, to electrical and hydraulic accessories, to the vehicle itself. In this context, the real-time estimation of engine and load torque can play a very important role, especially if this estimation can be performed using the same signals already available to the powertrain control module.
1998-02-23
Technical Paper
980203
Devesh Upadhyay, Giorgio Rizzoni
Over the years numerous researchers have suggested that the ionization current signal carries within it combustion relevant information. The possibility of using this signal for diagnostics and control provides motivation for continued research in this area. To be able to use the ion current signal for feedback control a reliable estimate of some combustion related parameter is necessary and therein lies the difficulty. Given the nature of the ion current signal this is not a trivial task. Fei An et al. [1] employed PCA for feature extraction and then used these feature vectors to design a neural network based classifier for the estimation of air to fuel ratio (AFR). Although the classifier predicted AFR with sufficient reliability, a major draw back was that the ion current signals used for prediction were averaged signals thus precluding a cycle to cycle estimate of AFR.
1998-02-23
Technical Paper
981061
Bernd Baumann, Giorgio Rizzoni, Gregory Washington
This paper discusses the use of intelligent control techniques for the control of a parallel hybrid electric vehicle powertrain. Artificial neural networks and fuzzy logic are used to implement a load leveling strategy. The resulting vehicle control unit, a supervisory controller, coordinates the powertrain components. The presented controller has the ability to adapt to different drivers and driving cycles. This allows a control strategy which includes both fuel-economy and performance modes. The strategy was implemented on the Ohio State University FutureCar.
1996-12-01
Technical Paper
962511
Keith Grider, Giorgio Rizzoni
The aim of this paper is to document a three year process of product development of the Formula Lightningtm electric race car constructed at the Ohio State University. Today interest in electric vehicles (EV's) is growing, due to the technological advances in recent years, but also in part due to recent legislation which mandates the introduction of ‘zero emission vehicles’ in California before the end of the century. The definition of ‘zero emission vehicle’ is: a vehicle which does not emit any pollutants during operation. Technologically, the only near term vehicle which meets this definition is an EV. One of the most difficult problems of electric racing is that the usable energy in a given set of batteries is not as easily determined as the amount of fuel in a tank. Also, the motor controllers may limit power output as battery voltage drops, further decreasing the amount of usable energy in a battery set.
1998-02-23
Technical Paper
980519
Ahmed Soliman, Yong-Yha Kim, Giorgio Rizzoni, José Candau
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
1998-02-23
Technical Paper
980520
Yong Wha Kim, Giorgio Rizzoni
The use of mathematical models derived from physical principles is gaining more widespread acceptance for automotive control and diagnostic applications. A suitable mathematical model may reduce, though not eliminate, the need for empirical calibrations, and may help in accommodating changes in operating conditions, external disturbances, vehicle to vehicle variability, aging etc. Recent studies have shown that model based approaches for both control and diagnostic design offer a viable alternative to empirical methods for industrial applications. However, until recently, model-based control and diagnostic algorithms have been designed separately, without considering their interactions explicitly. As a consequence, the performance of these algorithms may be limited, and even deteriorated in the presence of modeling uncertainty and disturbance.
1997-02-24
Technical Paper
970031
Yong-Wha Kim, Giorgio Rizzoni, Vadim Utkin
In this paper, we propose an IC engine fuel system diagnostic algorithm based on a discrete-event nonlinear observer using the production oxygen sensor. A mean value engine model is used to describe the engine dynamics. A procedure for designing the discrete event based observer is presented and applied to estimate important engine variables using the measured binary oxygen sensor output. The estimated variables are then used to perform diagnostics of the fuel system of the IC engine. Experimental results on a multi-cylinder production engine are presented to demonstrate the effectiveness of the proposed method.
1997-02-24
Technical Paper
970033
Fei An, Giorgio Rizzoni, Devesh Upadhyay
The process of incorporating the spark plug as a combustion probe, to perform misfire and knock detection, air to fuel ratio and spark timing control has been the subject of research for some time now. [3], [4]. The feasibility of the approach however depends on being able to correlate some characteristic of the ion current signal to the in cylinder combustion process. Shimaski et al. [3] and Miyata et al. [4] suggest such a relationship. The objective of this research has been to extract combustion information from the measured ion current flowing between spark plug electrodes by using various advanced signal processing methods, and to develop a methodology that will permit combustion diagnostics and possibly control based on these measurements. Tests were carried out on a single-cylinder, methane-fueled CFR engine.
1993-09-01
Technical Paper
932410
Giorgio Rizzoni, Francis T. Connolly
Crankshaft angular position measurements are fundamental to all modern automotive engines. These measurements are required to control fuel injection timing as well as ignition timing. However, many other functions can be performed from such measurements through the use of advanced signal processing. These additional functions are essentially diagnostic in nature although there is potential for substitution of primary fuel and ignition control functions. This paper illustrates the application of crankshaft angular position measurement to the estimation of individual cylinder indicated and/or brake torque in IC engines from measurement of crankshaft position/velocity.
1994-03-01
Technical Paper
940448
Ahmed Soliman, Giorgio Rizzoni
Ensuring the reliable operation of the emissions control system is a critical factor in complying with increasingly stringent exhaust emissions standards. In spite of significant advances, the performance of available diagnostic and test equipment is still amenable to further improvement, especially as it pertains to the diagnosis of incipient and intermittent faults. This paper presents experimental results pertaining to the diagnosis of complete, partial and intermittent faults in various components of the engine emissions control system. The instrumentation used in the study permitted simultaneous and essentially continuous analysis of the exhaust gases and of engine variables. Tests were conducted using a section of the EPA urban driving cycle (I/M 240), simulated by means of a throttle/dynamometer controller.
1995-02-01
Technical Paper
950837
P. Azzoni, G. Cantoni, G. Minelli, D. Moro, Giorgio Rizzoni, M. Ceccarani, S. Mazzetti
1995-02-01
Technical Paper
950845
Bahman Samimy, Giorgio Rizzoni, Kenneth C. Leisenring
Engine knock has been recognized as a major problem limiting the development of fuel efficient spark-ignition engines. Detection methods employed in current knock control systems for spark ignition engines use a measurement of engine block vibration tuned to one or more resonance frequencies to extract knock-related information from the engine structural vibration. A major problem in the detection of knock (especially at higher engine speed) in commercial engines is the isolation of the desired signal from the contributions of the components other than those associated with the phenomenon under investigation. This is generally referred to as background noise. It is known that the engine knock resonance frequencies vary due to changes in combustion chamber volume and temperature during the expansion phase. Therefore, we propose an improved knock detection method using joint time-frequency analysis of engine block vibration and pressure signals.
1995-02-01
Technical Paper
950478
Abdul-Majeed Azad, Lora B. Younkman, Sheikh A. Akbar, Ahmed Soliman, Giorgio Rizzoni
Abstract A prototype CO sensor based on anatase TiO2 was fabricated and tested in a Ford V6 engine. Fuel combustion was programmed to be near stoichiometric conditions, and emissions were monitored with an FT-IR analytical instrument. The sensor, positioned near the oxygen sensor in the exhaust manifold, was successfully tested for 50 cycles of revving and idling, and was observed to respond quickly and reproducibly. The sensor response was correlated to the CO concentration at specific engine temperatures and was found to vary systematically with increasing concentrations. This sensor has promising potentials to monitor the efficiency of the catalytic converter.
1995-02-01
Technical Paper
950480
Ahmed Soliman, Giorgio Rizzoni, Vasanth Krishnaswami
One of the gray areas in the implementation of regulations limiting the generation of pollutants from mobile sources is the actual effectiveness of the exhaust gas emissions control strategy in vehicles that have been in use for some time. While it is possible today to conduct limited diagnostics with the on-board engine computer by performing periodic checks to verify the validity of the signals measured by the on-board sensors, and to measure tailpipe emissions during routine inspection and maintenance, the task of correlating these measurements with each other to provide an on-line, accurate diagnosis of critical malfunctions has thus far proven to be a very challenging task, especially in the case of misfire.
1995-02-01
Technical Paper
951070
Donghyeon Lee, Giorgio Rizzoni
In recent years considerable interest has been placed on the detection of engine misfire. As part of the California Air Resources Board on-board diagnostics regulations for 1994 model year vehicles, misfire should be monitored continuously by the engine diagnostic system. It is expected that the next generation of on-board diagnostics regulations will demand monitoring of partial misfire as well. Several solutions to the misfire detection problem have been proposed and demonstrated for the detection of complete misfires. However, the performance of these methods in the presence of partial misfire is not altogether clear. The aim of this paper is to evaluate the performance of various misfire detection indices, all based on a measurement of crankshaft angular velocity, in the presence of partial misfire. The proposed algorithms are compared to a standard based on a measurement of indicated pressure.
1996-02-01
Technical Paper
960621
Ahmed Soliman, Giorgio Rizzoni, Vasanth Krishnaswami
A number of automotive diagnostic equipment and procedures have evolved over the last two decades, leading to two generations of on-board diagnostic requirements (OBDI and OBDII), increasing the number of components and systems to be monitored by the diagnostic tools. The goal of On-Board Diagnostic is to alert the driver to the presence of a malfunction of the emission control system, and to identify the location of the problem in order to assist mechanics in properly performing repairs. The aim of this paper is to suggest a methodology for the development of an Integrated Powertrain Diagnostic System (EPDS) that can combine the information supplied by conventional tailpipe inspection programs with onboard diagnostics to provide fast and reliable diagnosis of malfunctions.
1996-02-01
Technical Paper
960622
Piero Mario Azzoni, Davide Moro, Carlo Maria Porceddu-Cilione, Giorgio Rizzoni
The aim of this paper is to present the application of some signal processing and statistical analysis methods to the problem of detecting and isolating misfire occurrences in a twelve-cylinder high-performance engine. The method employed in this work is based on a measurement of engine angular velocity, processed in the frequency domain to extract a number of spectral components that are shown to be strongly affected by misfire events. These spectral components are then subject to a procedure known as Principal Components Analysis, in which the principal features of the angular speed waveform are extracted to generate individual cylinder misfire signatures. A clustering method is then implemented to permit the isolation of the cylinder responsible for the misfire. The paper briefly reviews the signal analysis method and presents experimental results supporting the validity of the approach.
1996-02-01
Technical Paper
960618
Bahman Samimy, Giorgio Rizzoni
We have performed an extensive study of cycle-to-cycle variation of engine knock and its occurrence in order to have a better understanding of engine knock. Experimental studies show the randomness of knock as well as its frequency varying nature. We propose using time-frequency based signal detection method to improve knock detection since this method can track frequency variations in the measured signals. The fundamental idea behind time-frequency analysis is to be able to understand and describe how the spectral content of a signal is changing in time. Classical signal analysis has traditionally dealt with time and frequency separately. Such individual descriptions are good in situation where spectral content of signals do not change with time; however, there are often signals that have time-varying spectral content such as engine knock. It is shown that one gains more information about knock signals using time-frequency analysis method.
1996-02-01
Technical Paper
961022
Kenneth Leisenring, Bahman Samimy, Giorgio Rizzoni
This paper presents a method for air/fuel ratio control using combustion pressure feedback during cold start to be used as an aid in laboratory experiments. The effects of varying air/fuel ratio during cold start are so profound that small differences in air/fuel ratio can create effects that will mask the effects of significant changes in other variables. The ability to control air/fuel ratio is an important aid in comprehensive emission studies during cold start. This work will facilitate future studies of cold start emissions.
1996-02-01
Technical Paper
960357
Enrico Ciulli, Giorgio Rizzoni, Jonathan Dawson
Three engine friction models of increasing complexity were developed in order to determine which type of model most effectively captured transient engine operation. Empirical constants for these models were determined through an optimization procedure using experimental data. These constants were then used with a simple dynamic model to produce overall simulations of the engine reciprocating and rotating dynamics. All three friction models appeared to provide useful results, however the two simpler models were much easier to implement. The most complex model presented some implementation problems, but promises to provide a more detailed picture of engine friction. The models were tested on a single cylinder research engine.
2006-10-16
Technical Paper
2006-01-3260
Codrin-Gruie Cantemir, Gabriel Ursescu, Lorenzo Serrao, Giorgio Rizzoni, James Bechtel, Thomas Udvare, Michael Letherwood
This paper presents an all-wheel-drive (AWD) hybrid electric vehicle (HEV) design approach for extreme off-road applications. The paper focuses on the powertrain design, modeling, simulation, and performance analysis. Since this project focuses on a military-type application, the powertrain is designed to enhance crew survivability and provide several different modes of limp-home operation by utilizing a new vehicle topology -herein referred to as the island topology. This topology consists of designing the vehicle such that the powertrain and other equipment and subsystems surround the crew compartment to provide a high level of protection against munitions and other harmful ordnance. Thus, in the event of an external shield penetration, the crew compartment remains protected by the surrounding equipment - which serves as a secondary shield.
2006-09-14
Technical Paper
2006-01-3001
Yann G. Guezennec, Ta-young Gabriel Choi, Giorgio Rizzoni, Jeffery Marusiak, Benjamin Yurkovich, Woongchul Choi
There is increasing interest in the use of alternative fuels for transportation, due to the increasing cost of petroleum based fuels. One possible alternative to the use of petroleum for transportation is to use electric grid power. This paper explores a possible design solution based on a plug-in fuel cell hybrid. A scaled down version of FC-HEV that is applicable to this concept, has been implemented as a proof of concept with fast prototyping toolkits, including a 32 bit micro processor, Matlab/Simulink software and an embedded system development kit. The resulting prototype vehicle demonstrated a high gasoline equivalent MPG as well as a successful functionality of micro grid power generation.
2004-03-08
Technical Paper
2004-01-1338
Xi Wei, Giorgio Rizzoni
Fuel economy, performance and driveability are three important subjects for evaluating vehicle performance. Evaluations in both simulations and real vehicles prefer objective and quantitative measures. Subjective and descriptive metrics cannot be easily implemented in simulations, and these evaluations vary with changing time or evaluators. Fuel economy is usually estimated under various city, highway and some other user-defined driving cycles. Performance criteria consist of acceleration/deceleration performance, gradeability and towing capability. Driveability measures deal with pedal responsiveness, operating smoothness and driving comfort. This includes interior noise level, jerk and acceleration parameters. Numerical references and some interpretations of the above metrics are presented in this paper, as well as how these metrics can be used to evaluate vehicle powertrain design and control strategy development.
2003-11-10
Technical Paper
2003-01-3398
Ashley L. Dunn, Gary J. Heydinger, Giorgio Rizzoni, Dennis A. Guenther
Published NHTSA rulemaking plans propose significant reduction in the maximum stopping distance for loaded Class-VIII commercial vehicles. To attain that goal, higher torque brakes, such as air disc brakes, will appear on prime movers long before the trailer market sees significant penetration. Electronic control of the brakes on prime movers should also be expected due to their ability to significantly shorten stopping distances. The influence upon jackknife stability of having higher performance brakes on the prime mover, while keeping traditional pneumatically controlled s-cam drum brakes on the trailer, is discussed in this paper. A hybrid vehicle dynamics model was applied to investigate the jackknife stability of tractor-semitrailer rigs under several combinations of load, speed, surface coefficient, and ABS functionality.
Viewing 1 to 30 of 55

Filter

  • Range:
    to:
  • Year: