Refine Your Search

Search Results

Viewing 1 to 11 of 11
Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2022-09-30
CURRENT
J1715_202209
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2021-05-28
HISTORICAL
J1715_202105
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
Standard

Interconnection Requirements for Onboard, Grid Support Inverter Systems

2021-03-10
CURRENT
J3072_202103
This SAE J3072 Standard establishes requirements for a grid support inverter system function which is integrated into a plug-in electric vehicle (PEV) which connects in parallel with an electric power system (EPS) by way of conductively coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter function to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 and IEEE 1547.1. This standard shall also support interactive inverters which conform to the requirements of IEEE 1547-2003 and IEEE 1547.1-2005, recognizing that many utility jurisdictions may not authorize interconnection.
Standard

Hybrid and Electric Vehicle Safety Systems Information Report

2015-01-23
HISTORICAL
J2990/2_201501
This information report provides an overview of a typical high voltage electric propulsion vehicle (xEV) and the associated on-board safety systems typically employed by OEM’s to protect these high voltage systems. The report aims to improve public confidence in xEV safety systems and dispel public misconceptions about the likelihood of being shocked by the high voltage system, even when the vehicle has been damaged. The report will document select high voltage systems used for xEV’s and describe safety systems employed to prevent exposure to the high voltage systems.
Standard

Hybrid and Electric Vehicle Safety Systems Information Report

2020-11-04
CURRENT
J2990/2_202011
This information report provides an overview of a typical high voltage electric propulsion vehicle (xEV) and the associated on-board safety systems typically employed by OEM’s to protect these high voltage systems. The report aims to improve public confidence in xEV safety systems and dispel public misconceptions about the likelihood of being shocked by the high voltage system, even when the vehicle has been damaged. The report will document select high voltage systems used for xEV’s and describe safety systems employed to prevent exposure to the high voltage systems.
Standard

Vehicle Power and Rated System Power Test for Electrified Powertrains

2023-01-17
CURRENT
J2908_202301
This SAE Information Report provides test methods and determination options for evaluating the maximum wheel power and rated system power of vehicles with electrified vehicle powertrains. The scope of this document encompasses passenger car and light- and medium-duty (GVW <10000 pounds) hybrid-electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel-cell electric vehicles (FCEVs). These testing methods can also be applied to conventional ICE vehicles, especially when measuring and comparing wheel power among a range of vehicle types. This document version includes a definition and determination methodology for a rated system power that is comparable to traditional internal combustion engine power ratings (e.g., SAE J1349 and UN ECE R85). The general public is most accustomed to “engine power” and/or “motor power” as the rating metric for conventional and electrified vehicles, respectively.
Standard

Guidelines for Electric Vehicle Safety

2020-10-13
CURRENT
J2344_202010
This SAE Information Report identifies and defines the preferred technical guidelines relating to safety for vehicles that contain High Voltage (HV), such as Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV), Fuel Cell Vehicles (FCV) and Plug-In Fuel Cell Vehicles (PFCV) during normal operation and charging, as applicable. Guidelines in this document do not necessarily address maintenance, repair, or assembly safety issues.
Standard

Guidelines for Electric Vehicle Safety

2010-03-05
HISTORICAL
J2344_201003
This SAE Information Report identifies and defines the preferred technical guidelines relating to safety for vehicles that contain High Voltage (HV), such as Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV), Fuel Cell Vehicles (FCV) and Plug-In Fuel Cell Vehicles (PFCV) during normal operation and charging, as applicable. Guidelines in this document do not necessarily address maintenance, repair, or assembly safety issues.
Standard

Hybrid and EV First and Second Responder Recommended Practice

2012-11-19
HISTORICAL
J2990_201211
xEVs involved in incidents present unique hazards associated with the high voltage system (including the battery system). These hazards can be grouped into 3 categories: chemical, electrical, and thermal. The potential consequences can vary depending on the size, configuration and specific battery chemistry. Other incidents may arise from secondary events such as garage fires and floods. These types of incidents are also considered in the recommended practice (RP). This RP aims to describe the potential consequences associated with hazards from xEVs and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred with an electrified vehicle. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement.
Standard

Hybrid and EV First and Second Responder Recommended Practice

2019-07-29
CURRENT
J2990_201907
xEVs involved in incidents present unique hazards associated with the high voltage system (including the battery system). These hazards can be grouped into three categories: chemical, electrical, and thermal. The potential consequences can vary depending on the size, configuration, and specific battery chemistry. Other incidents may arise from secondary events such as garage fires and floods. These types of incidents are also considered in the recommended practice (RP). This RP aims to describe the potential consequences associated with hazards from xEVs and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred with an electrified vehicle. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement. Lithium ion (Li-ion) batteries used for vehicle propulsion power are the assumed battery system of this RP.
X