Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Nitrogen Removal from a Urine-Soap Wastewater Using a Bioprocessor System: Process Monitoring and Control

2002-07-15
2002-01-2353
A detailed study was conducted on nitrification using a bench top bioprocessor system proposed for water recycling of a urine-soap wastewater expected to be generated by crewmembers on International Space Station (ISS) or similar long-term space missions. The bioprocessor system consisted of two packed bed biofilm reactors; one anoxic reactor used for denitrification and one aerobic reactor used for nitrification. lnfluent wastewater was a mixture of dilute NASA whole body soap (2,300 mg/L) and urea (500 mg/L as organic nitrogen). During two months of steady-state operation, average chemical oxygen demand (COD) removal was greater than 95%, and average total nitrogen removal was 70%. We observed that high levels of nitrite consistently accumulated in the aerobic (nitrifying) reactor effluent, indicating incomplete nitrification as the typical end product of the reaction would be nitrate.
Technical Paper

Simulation of Air Quality in ALS System with Biofiltration

2005-07-11
2005-01-3111
Most of the gaseous contaminants generated inside ALS (Advanced Life Support) cabins can be degraded to some degree by microbial degradation in a biofilter. The entry of biofiltration techniques into ALS will most likely involve integration with existing physico-chemical methods. However, in this study, cabin air quality treated by only biofiltration was predicted using the one-box and biofiltration models. Based on BVAD (Baseline Values and Assumptions Document) and SMAC (Spacecraft Maximum Allowable Concentrations), ammonia and carbon monoxide will be the critical compounds for biofilter design and control. Experimentation is needed to identify the pertinent microbial parameters and removal efficiency of carbon monoxide and to validate the results of this preliminary investigation.
X