Criteria

Text:
Author:
Display:

Results

Viewing 1 to 30 of 32
2009-06-15
Technical Paper
2009-01-1975
Mika Nuutinen, Ossi Kaario, Martti Larmi
A new variable density / physical property wall function formalism has been developed. The new formalism is designed to extend the validity range of wall functions to cover both the low- and high-Reynolds-number domains so that the restrictions on the non-dimensional near-wall mesh resolution can be avoided. The new formalism also accounts for the temperature gradient induced variations of density, viscosity, heat conductivity and specific heat capacity. The new wall function formalism is constructed in conjunction with a modified low-Reynolds-number turbulence model in order to avoid the conflicting requirements of low- and high-Reynolds-number models on the near wall mesh resolution. The new formulation is validated with test simulations of strongly heated air flows in circular tube against measurements and Direct Numerical Simulation (DNS) results.
2011-04-12
Technical Paper
2011-01-0843
Jukka-Pekka Keskinen, Ville Vuorinen, Martti Larmi
This study focuses on gaining a deeper understanding on the formation of turbulence and other in-cylinder flow structures caused by the intake jets during the intake stroke in internal combustion engines. This is important as the in-cylinder turbulence has a large effect on the mixing of fuel and oxidizer. A fine resolution large eddy simulation (LES) is carried out on an incompressible flow (Re is equivalent to 100,000) over a static valve (lift d = 7 mm) alongside with three other simulations using coarser meshes. The problem is studied in a simplified valve-cylinder geometry on which experimental data by Yasar et al., (2006) is available. The vortex cores, produced by the shear layer of the intake jets, are visualized using the λ₂ definition for vortex cores. The governing flow structures are identified and some features of the flow's mixing capabilities are observed. Additionally, the mixing is studied by releasing a passive scalar into to the flow.
2011-04-12
Technical Paper
2011-01-0841
Armin Wehrfritz, Ossi Kaario, Ville Vuorinen, Aki Tilli, Martti Larmi
This paper aims to study numerically the influence of the number of fuel sprays in a single-cylinder diesel engine on mixing and combustion. The CFD simulations are carried out for a heavy-duty diesel engine with an 8 hole injector in the standard configuration. The fuel spray mass-flow rate was obtained from 1D-simulations and has been adjusted according to the number of nozzle holes to keep the total injected fuel mass constant. Two cases concerning the modified mass-flow rate are studied. In the first case the injection time was decreased whereas in the second case the nozzle hole diameter was decreased. In both cases the amount of nozzle holes (i.e. fuel sprays) was increased in several steps to 18 holes. Quantitative analyses were performed for the local air-fuel ratio, homogeneity of mixture distribution, heat release rate and the resulting in-cylinder pressure.
2011-04-12
Technical Paper
2011-01-0819
Ossi Kaario, Anders Brink, Kalle Lehto, Karri Keskinen, Martti Larmi
New measurements have been done in order to obtain information concerning the effect of EGR and a paraffinic hydrotreated fuel for the smoke and NO emissions of a heavy-duty diesel engine. Measured smoke number and NO emissions are explained using detailed chemical kinetic calculations and CFD simulations. The local conditions in the research engine are analyzed by creating equivalence ratio - temperature (Phi-T) maps and analyzing the CFD results within these maps. The study uses different amount of EGR and two different diesel fuels; standard EN590 diesel fuel and a paraffinic hydrotreated vegetable oil (HVO). The detailed chemical kinetic calculations take into account the different EGR rates and the properties of the fuels. The residence time in the kinetical calculations is used to explain sooting combustion behavior within diesel combustion. It was observed that NO emission trends can be well captured with the Phi-T maps but the situation is more difficult with the engine smoke.
2009-11-02
Technical Paper
2009-01-2676
Ossi Kaario, Aki Tilli, Harri Hillamo, Teemu Sarjovaara, Ville Vuorinen, Martti Larmi
Experimental spray tip penetrations obtained from a large-bore medium-speed optical diesel engine were compared to CFD simulations. The optical spray results are unique as they are obtained from a running large-bore (200mm) diesel engine. The experimental spray tip penetration measurements were obtained during the early spray development period when the spray evaporation had not yet reached the quasi steady-state phase. The CFD simulations were conducted in both static chamber environment and in engine conditions. The fuel injection boundary conditions were obtained from 1-D simulations. Within the error margins associated with the experimental and computational data, relatively good accuracy was obtained between measured and simulated spray tip penetration. It was also observed that it is very important to have accurate fuel injection mass flow rate data. This was observed after a sensitivity analysis was made for the injection duration and fuel mass quantity.
2010-04-12
Technical Paper
2010-01-0624
Eero Antila, Matteo Imperato, Ossi Kaario, Martti Larmi
Two different medium-speed diesel engine cylinder head designs have been studied. The focus of the study has been the effect of intake channel design in the in-cylinder flow. The study has been carried out by CFD. The first cylinder head is a standard Wärtsilä 20 cylinder head and the second one is a specially designed head for a single cylinder research engine, called Extreme Value Engine (EVE). The CFD boundary conditions have been simulated by the help of a 1-d simulation code. In the full load cases the maximum cylinder pressure was 300 bar. Simulations have been done at lower load level too. One simulation with the new cylinder head was carried out with one intake valve closed in order to get an idea of the swirl to be generated by this approach. In the study the in-cylinder flow field, the cylinder charge and turbulence kinetic energy have been examined.
2010-04-12
Journal Article
2010-01-0627
Ossi Kaario, Mika Nuutinen, Kalle Lehto, Martti Larmi
Real gas effects are studied during the compression stroke of a diesel engine. Several different real gas models are compared to the ideal gas law and to the experimental pressure history. Comparisons are done with both 1-D and CFD simulations, and reasons and answers are found out for the observed differences between simulations and experimental data. The engine compression ratio was measured for accurate model predictions. In addition, a 300bar extreme pressure case is also analyzed with the real gas model since an engine capable for this performance level is currently being built at the Aalto University School of Science and Technology. Real gas effects are even more important in these extreme conditions than in normal operating pressures. Finally, it is shown that the predicted pressure history during an engine compression stroke by a real gas model is more accurately predicted than by the ideal gas law.
2009-09-13
Technical Paper
2009-24-0105
Aki Tilli, Ossi Kaario, Matteo Imperato, Martti Larmi
Renewable diesel-type fuels and their compatibility with a single-cylinder medium-speed research diesel engine were studied. The report consists of a literature study on the fuels, introduction of the simulation model designed and simulations made, and of the results and summary sections. The fuels studied were traditional biodiesel (fatty acid methyl ester, FAME), hydrotreated vegetable oil (HVO), Fischer-Tropsch (FT) diesel fuels and dimethyl ether (DME). According to the simulations, the behaviors of different renewable diesel fuels in the fuel injection system are quite similar to one another, with the greatest deviations found with DME. The main differences in the physical properties are fuel densities and viscosities and especially with DME compressibility, which have some predictable effect. The chemical properties of the fuels are more critical for a common rail fuel injection system.
2012-04-16
Technical Paper
2012-01-1256
Karri Keskinen, Ossi Kaario, Aki Tilli, Tuomo Hulkkonen, Martti Larmi
In this study, one-dimensional fluid dynamics simulation software was utilized in producing common rail diesel fuel injection for varying injection parameters with enhanced accuracy. Injection modeling refinement is motivated by improved comprehension of the effects of various physical phenomena within the injector. In addition, refined injection results yield boundary conditions for three-dimensional CFD simulations. The criteria for successful simulation results were evaluated upon experimental test run data that have been reliably obtained, primarily total injected mass per cycle. A common rail diesel fuel delivery system and its core mechanics were presented. System factors most critical to fuel delivery were focalized. Models of two solenoid-type common rail injectors of different physical sizes and applications were enhanced.
2012-04-16
Technical Paper
2012-01-0137
Jukka-Pekka Keskinen, Ville Vuorinen, Ossi Kaario, Martti Larmi
The present paper focuses on gaining a deeper understanding about the turbulent flow inside an engine cylinder using large eddy simulation. While the main motivation of the current study is to gain a deeper understanding of the flow patterns and especially about the swirl, the background motivation of this study is the development and testing of suitable methods for the large eddy simulation of combustion engines and the validation of the used simulation methodology. In particular, we study the swirl and other flow features generated by the intake jets inside the cylinder. The simulated geometry is the Sisu Diesel 84 engine cylinder where the exhaust valves are closed and the intake valves have constant valve lifts. Furthermore, the piston has been removed so that the flow is able to exit from the opposite end of the cylinder.
2006-04-03
Technical Paper
2006-01-1390
Ville Vuorinen, Martti Larmi, Eero Antila, Ossi Kaario, Essam El-Hannouny, Sreenath Gupta
In this paper the KH-RT and the CAB droplet breakup models are analyzed. The focus is on near nozzle spray simulation data that will be qualitatively compared with results obtained from x-ray experiments. Furthermore, the suitability of the x-ray method for spray studies is assessed and its importance for droplet breakup modeling is discussed. The simulations have been carried out with the Kiva3VRel2 CFD-code into which the KH-RT- and the CAB- droplet breakup models have been implemented. Since the x-ray method gives an integrated line-of-sight mass distribution of the spray, a suitable comparison of the experimental distributions and the simulated ones is made. Additionally, modeling aspects are discussed and the functioning of the models demonstrated by illustrating how the parcel Weber numbers and radii vary spatially. The transient nature of the phenomenon is highlighted and the influence of the breakup model parameters is discussed.
2005-10-24
Technical Paper
2005-01-3856
Ossi Kaario, Eero Antila, Martti Larmi
Soot modeling has become increasingly important as diesel engine manufacturers are faced with constantly tightening soot emission limits. As such the accuracy of the soot models used is more and more important but at the same time 3-D CFD engine studies require models that are computationally not too demanding. In this study, soot Phi-T maps created with detailed chemistry code have been used to develop a soot model for engineering purposes. The proposed soot model was first validated against detailed chemistry results in premixed laminar environment. As turbulence in engines is of major importance, it was taken into account in the soot oxidation part of the model with the laminar and turbulent characteristic time- type of approach. Finally, the model was tested in a large bore Diesel engine with varying loads. Within the steps described above, the proposed model was also compared with the well-known Hiroyasu-Magnussen soot model.
2003-10-27
Technical Paper
2003-01-3211
Jukka Tiainen, Ari Saarinen, Tore Grönlund, Martti Larmi
A novel two-stroke engine concept is introduced. The cylinder scavenging takes place during the upward motion of the piston. The gas exchange valves are similar to typical four-stroke valves, but the intake valves are smaller and lighter. The scavenging air pressure is remarkably higher than in present-day engines. The high scavenging air pressure is produced by an external compressor. The two-stroke operation is achieved without the drawbacks of port scavenged engines. Moreover, the combustion circumstances, charge pressure and temperature and internal exhaust gas re-circulation (EGR) can be controlled by using valve timings. There is good potential for a substantial reduction in NOx emissions through the use of adjustable compression pressure and temperature and by using the adjustable amount of exhaust gas re-circulation.
2003-10-27
Technical Paper
2003-01-3231
Martti Larmi, Jukka Tiainen
This study presents diesel spray breakup regimes and the wave model basic theory from literature. The RD wave model and the KH-RT wave model are explained. The implementation of the KH-RT wave model in a commercial CFD code is briefly presented. This study relies on experimental data from non-evaporating sprays that have earlier been measured at Helsinki University of Technology. The simulated fuel spray in a medium-speed diesel engine had a satisfactory match with the experimental data. The KH-RT wave model resulted in a much faster drop breakup than with the RD wave model. This resulted in a thin spray core with the KH-RT model. The fuel viscosity effect on drop sizes was well predicted by the KH-RT wave model.
2004-10-25
Technical Paper
2004-01-2963
Eero Antila, Martti Larmi, Ari Saarinen, Jukka Tiainen, Markus Laaksonen
Cylinder charge, cylinder flow field and fuel injection play the dominant roles in controlling combustion in compression ignition engines. Respective computational cylinder charge, initial flow field and fuel injection boundary affect combustion simulation and the quality of emission prediction. In this study the means of generating the initial values and boundary data are presented and the effect of different methods is discussed. This study deals with three different compression ignition engines with cylinder diameters of 111, 200 and 460 mm. The initial cylinder charge has been carefully analyzed through gas exchange pressure recordings and corresponding 1-dimensional simulation. The swirl generated by intake ports in a high-speed engine is simulated and measured. The combustion simulation using a whole cylinder model was compared with a sector model simulation result.
2004-03-08
Technical Paper
2004-01-0535
Krista Stalsberg-Zarling, Kathleen Feigl, Franz X. Tanner, Martti Larmi
The discrete droplet model is widely used to describe two-phase flows such as high-velocity dense sprays. The interaction between the liquid and the gas phase is modeled via appropriate source terms in the gas phase equations. This approach can lead to a strong dependence of the liquid-gas coupling on the spatial resolution of the gas phase. The liquid-gas coupling requires the computation of source terms using the gas phase properties, and, subsequently, these sources are then distributed onto the gas phase mesh. In this study, a Lagrange polynomial interpolation method has been developed to evaluate the source terms and also to distribute these source terms onto the gas mesh. The focus of this investigation has been on the momentum exchange between the two phases. The Lagrange polynomial interpolation and source term distribution methods are evaluated for non-evaporating sprays using KIVA3 as a modeling platform.
2004-03-08
Technical Paper
2004-01-0607
Tore Grönlund, Martti Larmi
The design and testing of the valve train for a new two-stroke diesel engine concept [1,2] is presented. The gas exchange of this process requires extremely fast-acting inlet valves, which constituted a very demanding designing task. A simulation model of the prototype valve train was constructed with commercially available software. The simulation program served as the main tool for optimizing the dynamic behavior of the valve train. The prototype valve train was built according to the simulations and valve acceleration measurements were performed in order to validate the simulation results. The simulations and measurements are presented in detail in this paper.
2008-04-14
Technical Paper
2008-01-0977
Eric Lendormy, Ossi Kaario, Martti Larmi
The study aims at providing more accurate initial conditions for turbulence prior to combustion with the help of a four valve, large bore diesel engine CFD model. Combustion simulations are typically done with a sector mesh and initial turbulence in these simulations is usually taken from relatively inaccurate correlations. This study also aims at developing a more accurate initial turbulence correlation for combustion simulations. A one-dimensional model was first used to provide boundary conditions as well as the initial flow conditions at the beginning of the simulation. Steady state and transient boundary conditions were studied. Also, the standard κ - ε and RNG/κ - ε turbulence models were compared. From the averaged values of turbulence kinetic energy and its dissipation rate over the cylinder volume, a re-tuned correlation for defining the initial turbulent conditions at bottom dead center (BDC) prior to the compression stroke is proposed.
2008-04-14
Technical Paper
2008-01-0973
Mika Nuutinen, Ossi Kaario, Martti Larmi
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
2008-04-14
Technical Paper
2008-01-0942
Harri Hillamo, Ossi Kaario, Martti Larmi
The current study was focused on flow field measurements of diesel sprays. The global fuel spray characteristics, such as spray penetration, have also been measured. Particle Image Velocimetry (PIV) was utilized for flow field measurements and the global spray characteristics were recorded with high-speed back light photographing. The flow field was scanned to get an idea of the compatibility of PIV technique applied to dense and high velocity sprays. It is well proven that the PIV technique can be utilized at areas of low number density of droplets, but the center of the spray is way beyond the ideal PIV measurement conditions. The depth at which accurate flow field information can be gathered was paid attention to.
2008-04-14
Technical Paper
2008-01-0933
Ville Vuorinen, Martti Larmi, Laszlo Fuchs
In this work simulation results of a round spray jet are presented using the combination of Large-Eddy Simulation (LES) and Lagrangian Particle Tracking (LPT). The simulation setup serves as a synthetic model of non-atomizing spray particles taken from the Rosin-Rammler size distribution that enter a chamber filled with gas through an inlet hole with diameter D. At the inlet gas velocity and droplet velocities are specified in addition to the initial size distribution of droplets. The Reynolds number as referred to the gas inflow velocity and jet diameter is Re=10000. The setup is advantageous for understanding the details of diesel sprays since it avoids near-nozzle spray modeling and thereof the corresponding error which is especially important in LES. Here, the implicit LES is applied so that the compressible Navier-Stokes equations are solved directly with a numerical algorithm in a fine mesh without a subgrid scale model.
2007-10-29
Technical Paper
2007-01-4046
Ossi Kaario, Eric Lendormy, Teemu Sarjovaara, Martti Larmi, Pekka Rantanen
The flow through the valves of an engine cylinder head is very complex in nature due to very high gas velocities and strong flow separation. However, it is also the typical situation in almost every engine related flow. In order to gain better understanding of the flow features after the cylinder head, and to gain knowledge of the performance level that can be expected from CFD analysis, flow field measurements and computations were made in an engine rig. Particle image velocimetry (PIV) and paddle wheel measurements have been conducted in a static heavy-duty diesel engine rig to characterize the flow features with different valve lifts and pressure differences. These measurements were compared with CFD predictions of the same engine. The simulations were done with the standard k-ε turbulence model and with the RNG turbulence model using the Star-CD flow solver.
2008-10-06
Technical Paper
2008-01-2477
Teemu Sarjovaara, Harri Hillamo, Martti Larmi, Timo Olenius
The objective of this study was to build up an optical access into a large bore medium-speed research engine and carry out the first fuel spray Particle Image Velocimetry (PIV) measurements in the running large bore medium-speed engine in high pressure environment. The aim was also to measure spray penetration with same optical access and apparatus. The measurements were performed in a single-cylinder large bore medium-speed research engine, the Extreme Value Engine (EVE) with optical access into the combustion chamber. The authors are not aware of any other studies on optical spray measurements in large bore medium-speed diesel engines. Successful optical measurements of the fuel spray penetration and the velocity fields were carried out. This confirms that the exceptional component design and laser sheet alignment used in this study proved to be valid for optical fuel spray measurements in large-bore medium-speed diesel engines.
2009-04-20
Technical Paper
2009-01-0710
Ossi Kaario, Eero Antila, Kalle Lehto, Ville Vuorinen, Martti Larmi
Fuel spray mixing has been analyzed numerically in a single-cylinder optical research engine with a flat piston top. In the study, a narrow spray angle has been used to align the sprays towards the piston top. Fuel spray mass flow rate has been simulated with 1-D code in order to have reliable boundary condition for the CFD simulations. Different start of fuel injections were tested as well as three charge air pressures and two initial mixture temperatures. Quantitative analysis was performed for the evaporation rates, mixture homogeneity at top dead center, and for the local air-fuel ratios. One of the observations of this study was that there exists an optimum start of fuel injection when the rate of spray evaporation and the mixture homogeneity are considered.
2005-04-11
Technical Paper
2005-01-1241
Krista Stalsberg-Zarling, Kathleen Feigl, Franz X. Tanner, Martti Larmi
This investigation is a continuation of a previous study by these authors in which a Lagrange polynomial interpolation method was developed to evaluate spray source terms and also to distribute the source terms onto the gas mesh; the method was applied to the liquid-gas momentum exchange. For this investigation, the method has been extended to the mass exchange between the liquid and gas phases due to evaporation. The Lagrange polynomial interpolation and source term distribution methods are applied to the liquid-gas mass and momentum exchange and are evaluated for evaporating sprays using KIVA3 as a modeling platform. These methods are compared with the standard “nearest neighbor” method of KIVA3, and experimental data are used to establish their validity. The evaluation criteria used include the liquid and vapor spray penetration, gas velocities and the computational stability.
2011-09-11
Technical Paper
2011-24-0039
Jingzhou Yu, Harri Hillamo, Teemu Sarjovaara, Tuomo Hulkkonen, Ossi Kaario, Martti Larmi
Natural gas has been considered as one promising alternative fuel for internal combustion (IC) engines to meet strict engine emission regulations and reduce the dependence on petroleum oil. Although compressed natural gas (CNG) intake manifold injection has been successfully applied into spark ignition (SI) engines in the past decade, natural gas direct injection compression ignition (DICI) engine with new injection system is being pursued to improve engine performance. Gas jet behaves significantly different from liquid fuels, so the better understanding of the effects of gas jet on fuel distribution and mixing process is essential for combustion and emission optimization. The present work is aimed to gain further insight into the characteristics of low pressure gas jet. An experimental gas jet investigation has been successfully conducted using tracer-based planar laser-induced fluorescence (PLIF) technique. For safety reason, nitrogen (N₂) was instead of CNG in this study.
2017-10-08
Technical Paper
2017-01-2381
Kristian Hentelä, Ossi Kaario, Vikram Garaniya, Laurie Goldsworthy, Martti Larmi
In the present study, a new approach for modelling emissions of coke particles or cenospheres from large diesel engines using HFO (Heavy fuel oil) was studied. The model used is based on a multicomponent droplet mass transfer and properties model that uses a continuous thermodynamics approach to model the complex composition of the HFO fuel and the resulting evaporation behavior of the fuel droplets. Cenospheres are modelled as the residue left in the fuel droplets towards the end of the simulation. The mass-transfer and fuel properties models were implemented into a cylinder section model based on the Wärtsilä W20 engine in the CFD-code Star CD v.4.24. Different submodels and corresponding parameters were tuned to match experimental data of cylinder pressures available from Wärtsilä for the studied cases. The results obtained from the present model were compared to experimental results found in the literature.
2001-03-05
Technical Paper
2001-01-0280
Martti Larmi, Sten Isaksson, Seppo Tikkanen, Mika Lammila
A dual-piston, two-stroke, compression ignition free piston engine has been simulated with zero- and one-dimensional performance simulation codes. The simulation models used in the codes have been developed to analyze and improve the internal combustion engine process of a hydraulic free piston engine prototype. The prototype was designed and constructed in Tampere University of Technology at the Institute of Hydraulics and Automation. Performance simulation analyses were conducted in Helsinki University of Technology at the Internal Combustion Engine Laboratory. The zero-dimensional model is used for the simulation of piston dynamics. The one-dimensional model is used for performance simulation, especially for the simulation of gas exchange process. The simulation results were verified through prototype engine measurements.
2002-05-06
Technical Paper
2002-01-1749
Ossi Kaario, Martti Larmi, Franz Tanner
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
2003-03-03
Technical Paper
2003-01-1069
Ossi Kaario, Heikki Pokela, Lars Kjäldman, Jukka Tiainen, Martti Larmi
The one-equation subgrid scale model for the Large Eddy Simulation (LES) turbulence model has been compared to the popular k-ε RNG turbulence model in very different sized direct injection diesel engines. The cylinder diameters of these engines range between 111 and 200 mm. This has been an initial attempt to study the effect of LES in diesel engines without any modification to the combustion model being used in its Reynolds-averaged Navier-Stokes (RANS) form. Despite some deficiencies in the current LES model being used, it already gave much more structured flow field with approximately the same kind of accuracy in the cylinder pressure predictions than the k-ε RNG turbulence model.
Viewing 1 to 30 of 32

Filter

  • Range:
    to:
  • Year: